ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nemnf Unicode version

Theorem xnn0nemnf 9443
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nemnf  |-  ( A  e. NN0*  ->  A  =/= -oo )

Proof of Theorem xnn0nemnf
StepHypRef Expression
1 elxnn0 9434 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9378 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32renemnfd 8198 . . 3  |-  ( A  e.  NN0  ->  A  =/= -oo )
4 pnfnemnf 8201 . . . 4  |- +oo  =/= -oo
5 neeq1 2413 . . . 4  |-  ( A  = +oo  ->  ( A  =/= -oo  <-> +oo  =/= -oo )
)
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  =/= -oo )
73, 6jaoi 721 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  =/= -oo )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    =/= wne 2400   +oocpnf 8178   -oocmnf 8179   NN0cn0 9369  NN0*cxnn0 9432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-pnf 8183  df-mnf 8184  df-xr 8185  df-inn 9111  df-n0 9370  df-xnn0 9433
This theorem is referenced by:  xnn0xrnemnf  9444
  Copyright terms: Public domain W3C validator