ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nemnf Unicode version

Theorem xnn0nemnf 9369
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nemnf  |-  ( A  e. NN0*  ->  A  =/= -oo )

Proof of Theorem xnn0nemnf
StepHypRef Expression
1 elxnn0 9360 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9304 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32renemnfd 8124 . . 3  |-  ( A  e.  NN0  ->  A  =/= -oo )
4 pnfnemnf 8127 . . . 4  |- +oo  =/= -oo
5 neeq1 2389 . . . 4  |-  ( A  = +oo  ->  ( A  =/= -oo  <-> +oo  =/= -oo )
)
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  =/= -oo )
73, 6jaoi 718 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  =/= -oo )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176    =/= wne 2376   +oocpnf 8104   -oocmnf 8105   NN0cn0 9295  NN0*cxnn0 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-pnf 8109  df-mnf 8110  df-xr 8111  df-inn 9037  df-n0 9296  df-xnn0 9359
This theorem is referenced by:  xnn0xrnemnf  9370
  Copyright terms: Public domain W3C validator