Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0add4d | Unicode version |
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9835. (Contributed by AV, 12-Dec-2020.) |
Ref | Expression |
---|---|
xnn0add4d.1 | NN0* |
xnn0add4d.2 | NN0* |
xnn0add4d.3 | NN0* |
xnn0add4d.4 | NN0* |
Ref | Expression |
---|---|
xnn0add4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnn0add4d.1 | . . 3 NN0* | |
2 | xnn0xrnemnf 9203 | . . 3 NN0* | |
3 | 1, 2 | syl 14 | . 2 |
4 | xnn0add4d.2 | . . 3 NN0* | |
5 | xnn0xrnemnf 9203 | . . 3 NN0* | |
6 | 4, 5 | syl 14 | . 2 |
7 | xnn0add4d.3 | . . 3 NN0* | |
8 | xnn0xrnemnf 9203 | . . 3 NN0* | |
9 | 7, 8 | syl 14 | . 2 |
10 | xnn0add4d.4 | . . 3 NN0* | |
11 | xnn0xrnemnf 9203 | . . 3 NN0* | |
12 | 10, 11 | syl 14 | . 2 |
13 | 3, 6, 9, 12 | xadd4d 9835 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 (class class class)co 5851 cmnf 7945 cxr 7946 NN0*cxnn0 9191 cxad 9720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1re 7861 ax-addrcl 7864 ax-addcom 7867 ax-addass 7869 ax-rnegex 7876 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7949 df-mnf 7950 df-xr 7951 df-inn 8872 df-n0 9129 df-xnn0 9192 df-xadd 9723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |