Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0xrnemnf | GIF version |
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xrnemnf | ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnn0xr 9217 | . 2 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
2 | xnn0nemnf 9223 | . 2 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ≠ wne 2345 -∞cmnf 7964 ℝ*cxr 7965 ℕ0*cxnn0 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-pnf 7968 df-mnf 7969 df-xr 7970 df-inn 8893 df-n0 9150 df-xnn0 9213 |
This theorem is referenced by: xnn0xadd0 9838 xnn0add4d 9857 |
Copyright terms: Public domain | W3C validator |