![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnn0xrnemnf | GIF version |
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xrnemnf | ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnn0xr 9308 | . 2 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
2 | xnn0nemnf 9314 | . 2 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ≠ wne 2364 -∞cmnf 8052 ℝ*cxr 8053 ℕ0*cxnn0 9303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-pnf 8056 df-mnf 8057 df-xr 8058 df-inn 8983 df-n0 9241 df-xnn0 9304 |
This theorem is referenced by: xnn0xadd0 9933 xnn0add4d 9952 |
Copyright terms: Public domain | W3C validator |