ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xrnemnf GIF version

Theorem xnn0xrnemnf 9440
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xrnemnf (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))

Proof of Theorem xnn0xrnemnf
StepHypRef Expression
1 xnn0xr 9433 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2 xnn0nemnf 9439 . 2 (𝐴 ∈ ℕ0*𝐴 ≠ -∞)
31, 2jca 306 1 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wne 2400  -∞cmnf 8175  *cxr 8176  0*cxnn0 9428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-pnf 8179  df-mnf 8180  df-xr 8181  df-inn 9107  df-n0 9366  df-xnn0 9429
This theorem is referenced by:  xnn0xadd0  10059  xnn0add4d  10078
  Copyright terms: Public domain W3C validator