| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp01disj | GIF version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| xp01disj | ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6508 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2460 | . 2 ⊢ ∅ ≠ 1o |
| 3 | xpsndisj 5106 | . 2 ⊢ (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ≠ wne 2375 ∩ cin 3164 ∅c0 3459 {csn 3632 × cxp 4671 1oc1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-1o 6492 |
| This theorem is referenced by: endisj 6901 |
| Copyright terms: Public domain | W3C validator |