ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disj GIF version

Theorem xp01disj 6509
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 6508 . . 3 1o ≠ ∅
21necomi 2460 . 2 ∅ ≠ 1o
3 xpsndisj 5106 . 2 (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅)
42, 3ax-mp 5 1 ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wne 2375  cin 3164  c0 3459  {csn 3632   × cxp 4671  1oc1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-1o 6492
This theorem is referenced by:  endisj  6901
  Copyright terms: Public domain W3C validator