ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disj GIF version

Theorem xp01disj 6462
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 6461 . . 3 1o ≠ ∅
21necomi 2445 . 2 ∅ ≠ 1o
3 xpsndisj 5076 . 2 (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅)
42, 3ax-mp 5 1 ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wne 2360  cin 3143  c0 3437  {csn 3610   × cxp 4645  1oc1o 6438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-br 4022  df-opab 4083  df-suc 4392  df-xp 4653  df-rel 4654  df-cnv 4655  df-1o 6445
This theorem is referenced by:  endisj  6854
  Copyright terms: Public domain W3C validator