| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2 | Unicode version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc |
|
| cc2.a |
|
| cc2.m |
|
| Ref | Expression |
|---|---|
| cc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc |
. 2
| |
| 2 | cc2.a |
. 2
| |
| 3 | cc2.m |
. . . 4
| |
| 4 | fveq2 5594 |
. . . . . . 7
| |
| 5 | 4 | eleq2d 2276 |
. . . . . 6
|
| 6 | 5 | exbidv 1849 |
. . . . 5
|
| 7 | 6 | cbvralv 2739 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | eleq1w 2267 |
. . . . 5
| |
| 10 | 9 | cbvexv 1943 |
. . . 4
|
| 11 | 10 | ralbii 2513 |
. . 3
|
| 12 | 8, 11 | sylib 122 |
. 2
|
| 13 | nfcv 2349 |
. . 3
| |
| 14 | nfcv 2349 |
. . 3
| |
| 15 | sneq 3649 |
. . . 4
| |
| 16 | fveq2 5594 |
. . . 4
| |
| 17 | 15, 16 | xpeq12d 4713 |
. . 3
|
| 18 | 13, 14, 17 | cbvmpt 4150 |
. 2
|
| 19 | nfcv 2349 |
. . 3
| |
| 20 | nfcv 2349 |
. . . 4
| |
| 21 | nfcv 2349 |
. . . . 5
| |
| 22 | nffvmpt1 5605 |
. . . . 5
| |
| 23 | 21, 22 | nffv 5604 |
. . . 4
|
| 24 | 20, 23 | nffv 5604 |
. . 3
|
| 25 | 2fveq3 5599 |
. . . 4
| |
| 26 | 25 | fveq2d 5598 |
. . 3
|
| 27 | 19, 24, 26 | cbvmpt 4150 |
. 2
|
| 28 | 1, 2, 12, 18, 27 | cc2lem 7408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-2nd 6245 df-er 6638 df-en 6846 df-cc 7405 |
| This theorem is referenced by: cc3 7410 acnccim 7414 |
| Copyright terms: Public domain | W3C validator |