| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2 | Unicode version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc |
|
| cc2.a |
|
| cc2.m |
|
| Ref | Expression |
|---|---|
| cc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc |
. 2
| |
| 2 | cc2.a |
. 2
| |
| 3 | cc2.m |
. . . 4
| |
| 4 | fveq2 5561 |
. . . . . . 7
| |
| 5 | 4 | eleq2d 2266 |
. . . . . 6
|
| 6 | 5 | exbidv 1839 |
. . . . 5
|
| 7 | 6 | cbvralv 2729 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | eleq1w 2257 |
. . . . 5
| |
| 10 | 9 | cbvexv 1933 |
. . . 4
|
| 11 | 10 | ralbii 2503 |
. . 3
|
| 12 | 8, 11 | sylib 122 |
. 2
|
| 13 | nfcv 2339 |
. . 3
| |
| 14 | nfcv 2339 |
. . 3
| |
| 15 | sneq 3634 |
. . . 4
| |
| 16 | fveq2 5561 |
. . . 4
| |
| 17 | 15, 16 | xpeq12d 4689 |
. . 3
|
| 18 | 13, 14, 17 | cbvmpt 4129 |
. 2
|
| 19 | nfcv 2339 |
. . 3
| |
| 20 | nfcv 2339 |
. . . 4
| |
| 21 | nfcv 2339 |
. . . . 5
| |
| 22 | nffvmpt1 5572 |
. . . . 5
| |
| 23 | 21, 22 | nffv 5571 |
. . . 4
|
| 24 | 20, 23 | nffv 5571 |
. . 3
|
| 25 | 2fveq3 5566 |
. . . 4
| |
| 26 | 25 | fveq2d 5565 |
. . 3
|
| 27 | 19, 24, 26 | cbvmpt 4129 |
. 2
|
| 28 | 1, 2, 12, 18, 27 | cc2lem 7349 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-2nd 6208 df-er 6601 df-en 6809 df-cc 7346 |
| This theorem is referenced by: cc3 7351 acnccim 7355 |
| Copyright terms: Public domain | W3C validator |