ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 Unicode version

Theorem cc2 7269
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc  |-  ( ph  -> CCHOICE )
cc2.a  |-  ( ph  ->  F  Fn  om )
cc2.m  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
Assertion
Ref Expression
cc2  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable groups:    g, F, n   
w, F, x    ph, n
Allowed substitution hints:    ph( x, w, g)

Proof of Theorem cc2
Dummy variables  f  m  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2  |-  ( ph  -> CCHOICE )
2 cc2.a . 2  |-  ( ph  ->  F  Fn  om )
3 cc2.m . . . 4  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
4 fveq2 5517 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
54eleq2d 2247 . . . . . 6  |-  ( x  =  y  ->  (
w  e.  ( F `
 x )  <->  w  e.  ( F `  y ) ) )
65exbidv 1825 . . . . 5  |-  ( x  =  y  ->  ( E. w  w  e.  ( F `  x )  <->  E. w  w  e.  ( F `  y ) ) )
76cbvralv 2705 . . . 4  |-  ( A. x  e.  om  E. w  w  e.  ( F `  x )  <->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
83, 7sylib 122 . . 3  |-  ( ph  ->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
9 eleq1w 2238 . . . . 5  |-  ( w  =  v  ->  (
w  e.  ( F `
 y )  <->  v  e.  ( F `  y ) ) )
109cbvexv 1918 . . . 4  |-  ( E. w  w  e.  ( F `  y )  <->  E. v  v  e.  ( F `  y ) )
1110ralbii 2483 . . 3  |-  ( A. y  e.  om  E. w  w  e.  ( F `  y )  <->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
128, 11sylib 122 . 2  |-  ( ph  ->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
13 nfcv 2319 . . 3  |-  F/_ n
( { m }  X.  ( F `  m
) )
14 nfcv 2319 . . 3  |-  F/_ m
( { n }  X.  ( F `  n
) )
15 sneq 3605 . . . 4  |-  ( m  =  n  ->  { m }  =  { n } )
16 fveq2 5517 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
1715, 16xpeq12d 4653 . . 3  |-  ( m  =  n  ->  ( { m }  X.  ( F `  m ) )  =  ( { n }  X.  ( F `  n )
) )
1813, 14, 17cbvmpt 4100 . 2  |-  ( m  e.  om  |->  ( { m }  X.  ( F `  m )
) )  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )
19 nfcv 2319 . . 3  |-  F/_ n
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) )
20 nfcv 2319 . . . 4  |-  F/_ m 2nd
21 nfcv 2319 . . . . 5  |-  F/_ m
f
22 nffvmpt1 5528 . . . . 5  |-  F/_ m
( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 n )
2321, 22nffv 5527 . . . 4  |-  F/_ m
( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) )
2420, 23nffv 5527 . . 3  |-  F/_ m
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
25 2fveq3 5522 . . . 4  |-  ( m  =  n  ->  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) )  =  ( f `  ( ( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
2625fveq2d 5521 . . 3  |-  ( m  =  n  ->  ( 2nd `  ( f `  ( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 m ) ) )  =  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
2719, 24, 26cbvmpt 4100 . 2  |-  ( m  e.  om  |->  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) ) )  =  ( n  e. 
om  |->  ( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
281, 2, 12, 18, 27cc2lem 7268 1  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   A.wral 2455   {csn 3594    |-> cmpt 4066   omcom 4591    X. cxp 4626    Fn wfn 5213   ` cfv 5218   2ndc2nd 6143  CCHOICEwacc 7264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-2nd 6145  df-er 6538  df-en 6744  df-cc 7265
This theorem is referenced by:  cc3  7270
  Copyright terms: Public domain W3C validator