Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc2 | Unicode version |
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | CCHOICE |
cc2.a | |
cc2.m |
Ref | Expression |
---|---|
cc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . 2 CCHOICE | |
2 | cc2.a | . 2 | |
3 | cc2.m | . . . 4 | |
4 | fveq2 5496 | . . . . . . 7 | |
5 | 4 | eleq2d 2240 | . . . . . 6 |
6 | 5 | exbidv 1818 | . . . . 5 |
7 | 6 | cbvralv 2696 | . . . 4 |
8 | 3, 7 | sylib 121 | . . 3 |
9 | eleq1w 2231 | . . . . 5 | |
10 | 9 | cbvexv 1911 | . . . 4 |
11 | 10 | ralbii 2476 | . . 3 |
12 | 8, 11 | sylib 121 | . 2 |
13 | nfcv 2312 | . . 3 | |
14 | nfcv 2312 | . . 3 | |
15 | sneq 3594 | . . . 4 | |
16 | fveq2 5496 | . . . 4 | |
17 | 15, 16 | xpeq12d 4636 | . . 3 |
18 | 13, 14, 17 | cbvmpt 4084 | . 2 |
19 | nfcv 2312 | . . 3 | |
20 | nfcv 2312 | . . . 4 | |
21 | nfcv 2312 | . . . . 5 | |
22 | nffvmpt1 5507 | . . . . 5 | |
23 | 21, 22 | nffv 5506 | . . . 4 |
24 | 20, 23 | nffv 5506 | . . 3 |
25 | 2fveq3 5501 | . . . 4 | |
26 | 25 | fveq2d 5500 | . . 3 |
27 | 19, 24, 26 | cbvmpt 4084 | . 2 |
28 | 1, 2, 12, 18, 27 | cc2lem 7228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 wcel 2141 wral 2448 csn 3583 cmpt 4050 com 4574 cxp 4609 wfn 5193 cfv 5198 c2nd 6118 CCHOICEwacc 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-2nd 6120 df-er 6513 df-en 6719 df-cc 7225 |
This theorem is referenced by: cc3 7230 |
Copyright terms: Public domain | W3C validator |