ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 Unicode version

Theorem cc2 7280
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc  |-  ( ph  -> CCHOICE )
cc2.a  |-  ( ph  ->  F  Fn  om )
cc2.m  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
Assertion
Ref Expression
cc2  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable groups:    g, F, n   
w, F, x    ph, n
Allowed substitution hints:    ph( x, w, g)

Proof of Theorem cc2
Dummy variables  f  m  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2  |-  ( ph  -> CCHOICE )
2 cc2.a . 2  |-  ( ph  ->  F  Fn  om )
3 cc2.m . . . 4  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
4 fveq2 5527 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
54eleq2d 2257 . . . . . 6  |-  ( x  =  y  ->  (
w  e.  ( F `
 x )  <->  w  e.  ( F `  y ) ) )
65exbidv 1835 . . . . 5  |-  ( x  =  y  ->  ( E. w  w  e.  ( F `  x )  <->  E. w  w  e.  ( F `  y ) ) )
76cbvralv 2715 . . . 4  |-  ( A. x  e.  om  E. w  w  e.  ( F `  x )  <->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
83, 7sylib 122 . . 3  |-  ( ph  ->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
9 eleq1w 2248 . . . . 5  |-  ( w  =  v  ->  (
w  e.  ( F `
 y )  <->  v  e.  ( F `  y ) ) )
109cbvexv 1928 . . . 4  |-  ( E. w  w  e.  ( F `  y )  <->  E. v  v  e.  ( F `  y ) )
1110ralbii 2493 . . 3  |-  ( A. y  e.  om  E. w  w  e.  ( F `  y )  <->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
128, 11sylib 122 . 2  |-  ( ph  ->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
13 nfcv 2329 . . 3  |-  F/_ n
( { m }  X.  ( F `  m
) )
14 nfcv 2329 . . 3  |-  F/_ m
( { n }  X.  ( F `  n
) )
15 sneq 3615 . . . 4  |-  ( m  =  n  ->  { m }  =  { n } )
16 fveq2 5527 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
1715, 16xpeq12d 4663 . . 3  |-  ( m  =  n  ->  ( { m }  X.  ( F `  m ) )  =  ( { n }  X.  ( F `  n )
) )
1813, 14, 17cbvmpt 4110 . 2  |-  ( m  e.  om  |->  ( { m }  X.  ( F `  m )
) )  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )
19 nfcv 2329 . . 3  |-  F/_ n
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) )
20 nfcv 2329 . . . 4  |-  F/_ m 2nd
21 nfcv 2329 . . . . 5  |-  F/_ m
f
22 nffvmpt1 5538 . . . . 5  |-  F/_ m
( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 n )
2321, 22nffv 5537 . . . 4  |-  F/_ m
( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) )
2420, 23nffv 5537 . . 3  |-  F/_ m
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
25 2fveq3 5532 . . . 4  |-  ( m  =  n  ->  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) )  =  ( f `  ( ( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
2625fveq2d 5531 . . 3  |-  ( m  =  n  ->  ( 2nd `  ( f `  ( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 m ) ) )  =  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
2719, 24, 26cbvmpt 4110 . 2  |-  ( m  e.  om  |->  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) ) )  =  ( n  e. 
om  |->  ( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
281, 2, 12, 18, 27cc2lem 7279 1  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1502    e. wcel 2158   A.wral 2465   {csn 3604    |-> cmpt 4076   omcom 4601    X. cxp 4636    Fn wfn 5223   ` cfv 5228   2ndc2nd 6154  CCHOICEwacc 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-2nd 6156  df-er 6549  df-en 6755  df-cc 7276
This theorem is referenced by:  cc3  7281
  Copyright terms: Public domain W3C validator