| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2 | Unicode version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc |
|
| cc2.a |
|
| cc2.m |
|
| Ref | Expression |
|---|---|
| cc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc |
. 2
| |
| 2 | cc2.a |
. 2
| |
| 3 | cc2.m |
. . . 4
| |
| 4 | fveq2 5575 |
. . . . . . 7
| |
| 5 | 4 | eleq2d 2274 |
. . . . . 6
|
| 6 | 5 | exbidv 1847 |
. . . . 5
|
| 7 | 6 | cbvralv 2737 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | eleq1w 2265 |
. . . . 5
| |
| 10 | 9 | cbvexv 1941 |
. . . 4
|
| 11 | 10 | ralbii 2511 |
. . 3
|
| 12 | 8, 11 | sylib 122 |
. 2
|
| 13 | nfcv 2347 |
. . 3
| |
| 14 | nfcv 2347 |
. . 3
| |
| 15 | sneq 3643 |
. . . 4
| |
| 16 | fveq2 5575 |
. . . 4
| |
| 17 | 15, 16 | xpeq12d 4699 |
. . 3
|
| 18 | 13, 14, 17 | cbvmpt 4138 |
. 2
|
| 19 | nfcv 2347 |
. . 3
| |
| 20 | nfcv 2347 |
. . . 4
| |
| 21 | nfcv 2347 |
. . . . 5
| |
| 22 | nffvmpt1 5586 |
. . . . 5
| |
| 23 | 21, 22 | nffv 5585 |
. . . 4
|
| 24 | 20, 23 | nffv 5585 |
. . 3
|
| 25 | 2fveq3 5580 |
. . . 4
| |
| 26 | 25 | fveq2d 5579 |
. . 3
|
| 27 | 19, 24, 26 | cbvmpt 4138 |
. 2
|
| 28 | 1, 2, 12, 18, 27 | cc2lem 7377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-2nd 6226 df-er 6619 df-en 6827 df-cc 7374 |
| This theorem is referenced by: cc3 7379 acnccim 7383 |
| Copyright terms: Public domain | W3C validator |