ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 Unicode version

Theorem cc2 7329
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc  |-  ( ph  -> CCHOICE )
cc2.a  |-  ( ph  ->  F  Fn  om )
cc2.m  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
Assertion
Ref Expression
cc2  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable groups:    g, F, n   
w, F, x    ph, n
Allowed substitution hints:    ph( x, w, g)

Proof of Theorem cc2
Dummy variables  f  m  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2  |-  ( ph  -> CCHOICE )
2 cc2.a . 2  |-  ( ph  ->  F  Fn  om )
3 cc2.m . . . 4  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
4 fveq2 5555 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
54eleq2d 2263 . . . . . 6  |-  ( x  =  y  ->  (
w  e.  ( F `
 x )  <->  w  e.  ( F `  y ) ) )
65exbidv 1836 . . . . 5  |-  ( x  =  y  ->  ( E. w  w  e.  ( F `  x )  <->  E. w  w  e.  ( F `  y ) ) )
76cbvralv 2726 . . . 4  |-  ( A. x  e.  om  E. w  w  e.  ( F `  x )  <->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
83, 7sylib 122 . . 3  |-  ( ph  ->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
9 eleq1w 2254 . . . . 5  |-  ( w  =  v  ->  (
w  e.  ( F `
 y )  <->  v  e.  ( F `  y ) ) )
109cbvexv 1930 . . . 4  |-  ( E. w  w  e.  ( F `  y )  <->  E. v  v  e.  ( F `  y ) )
1110ralbii 2500 . . 3  |-  ( A. y  e.  om  E. w  w  e.  ( F `  y )  <->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
128, 11sylib 122 . 2  |-  ( ph  ->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
13 nfcv 2336 . . 3  |-  F/_ n
( { m }  X.  ( F `  m
) )
14 nfcv 2336 . . 3  |-  F/_ m
( { n }  X.  ( F `  n
) )
15 sneq 3630 . . . 4  |-  ( m  =  n  ->  { m }  =  { n } )
16 fveq2 5555 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
1715, 16xpeq12d 4685 . . 3  |-  ( m  =  n  ->  ( { m }  X.  ( F `  m ) )  =  ( { n }  X.  ( F `  n )
) )
1813, 14, 17cbvmpt 4125 . 2  |-  ( m  e.  om  |->  ( { m }  X.  ( F `  m )
) )  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )
19 nfcv 2336 . . 3  |-  F/_ n
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) )
20 nfcv 2336 . . . 4  |-  F/_ m 2nd
21 nfcv 2336 . . . . 5  |-  F/_ m
f
22 nffvmpt1 5566 . . . . 5  |-  F/_ m
( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 n )
2321, 22nffv 5565 . . . 4  |-  F/_ m
( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) )
2420, 23nffv 5565 . . 3  |-  F/_ m
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
25 2fveq3 5560 . . . 4  |-  ( m  =  n  ->  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) )  =  ( f `  ( ( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
2625fveq2d 5559 . . 3  |-  ( m  =  n  ->  ( 2nd `  ( f `  ( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 m ) ) )  =  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
2719, 24, 26cbvmpt 4125 . 2  |-  ( m  e.  om  |->  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) ) )  =  ( n  e. 
om  |->  ( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
281, 2, 12, 18, 27cc2lem 7328 1  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   A.wral 2472   {csn 3619    |-> cmpt 4091   omcom 4623    X. cxp 4658    Fn wfn 5250   ` cfv 5255   2ndc2nd 6194  CCHOICEwacc 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-2nd 6196  df-er 6589  df-en 6797  df-cc 7325
This theorem is referenced by:  cc3  7330
  Copyright terms: Public domain W3C validator