ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 Unicode version

Theorem cc2 7334
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc  |-  ( ph  -> CCHOICE )
cc2.a  |-  ( ph  ->  F  Fn  om )
cc2.m  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
Assertion
Ref Expression
cc2  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable groups:    g, F, n   
w, F, x    ph, n
Allowed substitution hints:    ph( x, w, g)

Proof of Theorem cc2
Dummy variables  f  m  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2  |-  ( ph  -> CCHOICE )
2 cc2.a . 2  |-  ( ph  ->  F  Fn  om )
3 cc2.m . . . 4  |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )
4 fveq2 5558 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
54eleq2d 2266 . . . . . 6  |-  ( x  =  y  ->  (
w  e.  ( F `
 x )  <->  w  e.  ( F `  y ) ) )
65exbidv 1839 . . . . 5  |-  ( x  =  y  ->  ( E. w  w  e.  ( F `  x )  <->  E. w  w  e.  ( F `  y ) ) )
76cbvralv 2729 . . . 4  |-  ( A. x  e.  om  E. w  w  e.  ( F `  x )  <->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
83, 7sylib 122 . . 3  |-  ( ph  ->  A. y  e.  om  E. w  w  e.  ( F `  y ) )
9 eleq1w 2257 . . . . 5  |-  ( w  =  v  ->  (
w  e.  ( F `
 y )  <->  v  e.  ( F `  y ) ) )
109cbvexv 1933 . . . 4  |-  ( E. w  w  e.  ( F `  y )  <->  E. v  v  e.  ( F `  y ) )
1110ralbii 2503 . . 3  |-  ( A. y  e.  om  E. w  w  e.  ( F `  y )  <->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
128, 11sylib 122 . 2  |-  ( ph  ->  A. y  e.  om  E. v  v  e.  ( F `  y ) )
13 nfcv 2339 . . 3  |-  F/_ n
( { m }  X.  ( F `  m
) )
14 nfcv 2339 . . 3  |-  F/_ m
( { n }  X.  ( F `  n
) )
15 sneq 3633 . . . 4  |-  ( m  =  n  ->  { m }  =  { n } )
16 fveq2 5558 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
1715, 16xpeq12d 4688 . . 3  |-  ( m  =  n  ->  ( { m }  X.  ( F `  m ) )  =  ( { n }  X.  ( F `  n )
) )
1813, 14, 17cbvmpt 4128 . 2  |-  ( m  e.  om  |->  ( { m }  X.  ( F `  m )
) )  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )
19 nfcv 2339 . . 3  |-  F/_ n
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) )
20 nfcv 2339 . . . 4  |-  F/_ m 2nd
21 nfcv 2339 . . . . 5  |-  F/_ m
f
22 nffvmpt1 5569 . . . . 5  |-  F/_ m
( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 n )
2321, 22nffv 5568 . . . 4  |-  F/_ m
( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) )
2420, 23nffv 5568 . . 3  |-  F/_ m
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
25 2fveq3 5563 . . . 4  |-  ( m  =  n  ->  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) )  =  ( f `  ( ( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) )
2625fveq2d 5562 . . 3  |-  ( m  =  n  ->  ( 2nd `  ( f `  ( ( m  e. 
om  |->  ( { m }  X.  ( F `  m ) ) ) `
 m ) ) )  =  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
2719, 24, 26cbvmpt 4128 . 2  |-  ( m  e.  om  |->  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  m
) ) ) )  =  ( n  e. 
om  |->  ( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( F `  m ) ) ) `  n
) ) ) )
281, 2, 12, 18, 27cc2lem 7333 1  |-  ( ph  ->  E. g ( g  Fn  om  /\  A. n  e.  om  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167   A.wral 2475   {csn 3622    |-> cmpt 4094   omcom 4626    X. cxp 4661    Fn wfn 5253   ` cfv 5258   2ndc2nd 6197  CCHOICEwacc 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-2nd 6199  df-er 6592  df-en 6800  df-cc 7330
This theorem is referenced by:  cc3  7335
  Copyright terms: Public domain W3C validator