ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima2 Unicode version

Theorem resima2 4733
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
resima2  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )

Proof of Theorem resima2
StepHypRef Expression
1 df-ima 4441 . 2  |-  ( ( A  |`  C ) " B )  =  ran  ( ( A  |`  C )  |`  B )
2 resres 4713 . . . 4  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
32rneqi 4651 . . 3  |-  ran  (
( A  |`  C )  |`  B )  =  ran  ( A  |`  ( C  i^i  B ) )
4 df-ss 3010 . . . 4  |-  ( B 
C_  C  <->  ( B  i^i  C )  =  B )
5 incom 3190 . . . . . . . 8  |-  ( C  i^i  B )  =  ( B  i^i  C
)
65a1i 9 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
76reseq2d 4701 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( C  i^i  B ) )  =  ( A  |`  ( B  i^i  C ) ) )
87rneqd 4652 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ran  ( A  |`  ( B  i^i  C
) ) )
9 reseq2 4696 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( B  i^i  C ) )  =  ( A  |`  B )
)
109rneqd 4652 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ran  ( A  |`  B ) )
11 df-ima 4441 . . . . . 6  |-  ( A
" B )  =  ran  ( A  |`  B )
1210, 11syl6eqr 2138 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ( A " B ) )
138, 12eqtrd 2120 . . . 4  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
144, 13sylbi 119 . . 3  |-  ( B 
C_  C  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
153, 14syl5eq 2132 . 2  |-  ( B 
C_  C  ->  ran  ( ( A  |`  C )  |`  B )  =  ( A " B ) )
161, 15syl5eq 2132 1  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    i^i cin 2996    C_ wss 2997   ran crn 4429    |` cres 4430   "cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator