ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima2 Unicode version

Theorem resima2 4901
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
resima2  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )

Proof of Theorem resima2
StepHypRef Expression
1 df-ima 4600 . 2  |-  ( ( A  |`  C ) " B )  =  ran  ( ( A  |`  C )  |`  B )
2 resres 4879 . . . 4  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
32rneqi 4815 . . 3  |-  ran  (
( A  |`  C )  |`  B )  =  ran  ( A  |`  ( C  i^i  B ) )
4 df-ss 3115 . . . 4  |-  ( B 
C_  C  <->  ( B  i^i  C )  =  B )
5 incom 3299 . . . . . . . 8  |-  ( C  i^i  B )  =  ( B  i^i  C
)
65a1i 9 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
76reseq2d 4867 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( C  i^i  B ) )  =  ( A  |`  ( B  i^i  C ) ) )
87rneqd 4816 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ran  ( A  |`  ( B  i^i  C
) ) )
9 reseq2 4862 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( B  i^i  C ) )  =  ( A  |`  B )
)
109rneqd 4816 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ran  ( A  |`  B ) )
11 df-ima 4600 . . . . . 6  |-  ( A
" B )  =  ran  ( A  |`  B )
1210, 11eqtr4di 2208 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ( A " B ) )
138, 12eqtrd 2190 . . . 4  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
144, 13sylbi 120 . . 3  |-  ( B 
C_  C  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
153, 14syl5eq 2202 . 2  |-  ( B 
C_  C  ->  ran  ( ( A  |`  C )  |`  B )  =  ( A " B ) )
161, 15syl5eq 2202 1  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    i^i cin 3101    C_ wss 3102   ran crn 4588    |` cres 4589   "cima 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-xp 4593  df-rel 4594  df-cnv 4595  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600
This theorem is referenced by:  cnptopresti  12680  cnptoprest  12681
  Copyright terms: Public domain W3C validator