ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst2 Unicode version

Theorem cnconst2 14401
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )

Proof of Theorem cnconst2
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5452 . . 3  |-  ( B  e.  Y  ->  ( X  X.  { B }
) : X --> Y )
213ad2ant3 1022 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } ) : X --> Y )
32adantr 276 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
) : X --> Y )
4 simpll3 1040 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  B  e.  Y )
5 simplr 528 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  x  e.  X )
6 fvconst2g 5772 . . . . . . . 8  |-  ( ( B  e.  Y  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
74, 5, 6syl2anc 411 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( X  X.  { B } ) `  x
)  =  B )
87eleq1d 2262 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  <-> 
B  e.  y ) )
9 simpll1 1038 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  J  e.  (TopOn `  X ) )
10 toponmax 14193 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  X  e.  J )
12 simplr 528 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  x  e.  X )
13 df-ima 4672 . . . . . . . . 9  |-  ( ( X  X.  { B } ) " X
)  =  ran  (
( X  X.  { B } )  |`  X )
14 ssid 3199 . . . . . . . . . . . . 13  |-  X  C_  X
15 xpssres 4977 . . . . . . . . . . . . 13  |-  ( X 
C_  X  ->  (
( X  X.  { B } )  |`  X )  =  ( X  X.  { B } ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( ( X  X.  { B } )  |`  X )  =  ( X  X.  { B } )
1716rneqi 4890 . . . . . . . . . . 11  |-  ran  (
( X  X.  { B } )  |`  X )  =  ran  ( X  X.  { B }
)
18 rnxpss 5097 . . . . . . . . . . 11  |-  ran  ( X  X.  { B }
)  C_  { B }
1917, 18eqsstri 3211 . . . . . . . . . 10  |-  ran  (
( X  X.  { B } )  |`  X ) 
C_  { B }
20 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  B  e.  y )
2120snssd 3763 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  { B }  C_  y )
2219, 21sstrid 3190 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ran  ( ( X  X.  { B } )  |`  X ) 
C_  y )
2313, 22eqsstrid 3225 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ( ( X  X.  { B }
) " X ) 
C_  y )
24 eleq2 2257 . . . . . . . . . 10  |-  ( u  =  X  ->  (
x  e.  u  <->  x  e.  X ) )
25 imaeq2 5001 . . . . . . . . . . 11  |-  ( u  =  X  ->  (
( X  X.  { B } ) " u
)  =  ( ( X  X.  { B } ) " X
) )
2625sseq1d 3208 . . . . . . . . . 10  |-  ( u  =  X  ->  (
( ( X  X.  { B } ) "
u )  C_  y  <->  ( ( X  X.  { B } ) " X
)  C_  y )
)
2724, 26anbi12d 473 . . . . . . . . 9  |-  ( u  =  X  ->  (
( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
)  <->  ( x  e.  X  /\  ( ( X  X.  { B } ) " X
)  C_  y )
) )
2827rspcev 2864 . . . . . . . 8  |-  ( ( X  e.  J  /\  ( x  e.  X  /\  ( ( X  X.  { B } ) " X )  C_  y
) )  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
2911, 12, 23, 28syl12anc 1247 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
3029expr 375 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  ( B  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
318, 30sylbid 150 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
3231ralrimiva 2567 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  A. y  e.  K  ( (
( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
33 simpl1 1002 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  J  e.  (TopOn `  X )
)
34 simpl2 1003 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
35 simpr 110 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  x  e.  X )
36 iscnp 14367 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  ->  ( ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
3733, 34, 35, 36syl3anc 1249 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  (
( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )  <->  ( ( X  X.  { B } ) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
383, 32, 37mpbir2and 946 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x ) )
3938ralrimiva 2567 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K ) `  x ) )
40 cncnp 14398 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
41403adant3 1019 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
422, 39, 41mpbir2and 946 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   {csn 3618    X. cxp 4657   ran crn 4660    |` cres 4661   "cima 4662   -->wf 5250   ` cfv 5254  (class class class)co 5918  TopOnctopon 14178    Cn ccn 14353    CnP ccnp 14354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-cn 14356  df-cnp 14357
This theorem is referenced by:  cnconst  14402  cnmptc  14450
  Copyright terms: Public domain W3C validator