ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst2 Unicode version

Theorem cnconst2 12402
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )

Proof of Theorem cnconst2
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5321 . . 3  |-  ( B  e.  Y  ->  ( X  X.  { B }
) : X --> Y )
213ad2ant3 1004 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } ) : X --> Y )
32adantr 274 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
) : X --> Y )
4 simpll3 1022 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  B  e.  Y )
5 simplr 519 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  x  e.  X )
6 fvconst2g 5634 . . . . . . . 8  |-  ( ( B  e.  Y  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
74, 5, 6syl2anc 408 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( X  X.  { B } ) `  x
)  =  B )
87eleq1d 2208 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  <-> 
B  e.  y ) )
9 simpll1 1020 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  J  e.  (TopOn `  X ) )
10 toponmax 12192 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  X  e.  J )
12 simplr 519 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  x  e.  X )
13 df-ima 4552 . . . . . . . . 9  |-  ( ( X  X.  { B } ) " X
)  =  ran  (
( X  X.  { B } )  |`  X )
14 ssid 3117 . . . . . . . . . . . . 13  |-  X  C_  X
15 xpssres 4854 . . . . . . . . . . . . 13  |-  ( X 
C_  X  ->  (
( X  X.  { B } )  |`  X )  =  ( X  X.  { B } ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( ( X  X.  { B } )  |`  X )  =  ( X  X.  { B } )
1716rneqi 4767 . . . . . . . . . . 11  |-  ran  (
( X  X.  { B } )  |`  X )  =  ran  ( X  X.  { B }
)
18 rnxpss 4970 . . . . . . . . . . 11  |-  ran  ( X  X.  { B }
)  C_  { B }
1917, 18eqsstri 3129 . . . . . . . . . 10  |-  ran  (
( X  X.  { B } )  |`  X ) 
C_  { B }
20 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  B  e.  y )
2120snssd 3665 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  { B }  C_  y )
2219, 21sstrid 3108 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ran  ( ( X  X.  { B } )  |`  X ) 
C_  y )
2313, 22eqsstrid 3143 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ( ( X  X.  { B }
) " X ) 
C_  y )
24 eleq2 2203 . . . . . . . . . 10  |-  ( u  =  X  ->  (
x  e.  u  <->  x  e.  X ) )
25 imaeq2 4877 . . . . . . . . . . 11  |-  ( u  =  X  ->  (
( X  X.  { B } ) " u
)  =  ( ( X  X.  { B } ) " X
) )
2625sseq1d 3126 . . . . . . . . . 10  |-  ( u  =  X  ->  (
( ( X  X.  { B } ) "
u )  C_  y  <->  ( ( X  X.  { B } ) " X
)  C_  y )
)
2724, 26anbi12d 464 . . . . . . . . 9  |-  ( u  =  X  ->  (
( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
)  <->  ( x  e.  X  /\  ( ( X  X.  { B } ) " X
)  C_  y )
) )
2827rspcev 2789 . . . . . . . 8  |-  ( ( X  e.  J  /\  ( x  e.  X  /\  ( ( X  X.  { B } ) " X )  C_  y
) )  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
2911, 12, 23, 28syl12anc 1214 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
3029expr 372 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  ( B  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
318, 30sylbid 149 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
3231ralrimiva 2505 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  A. y  e.  K  ( (
( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
33 simpl1 984 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  J  e.  (TopOn `  X )
)
34 simpl2 985 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
35 simpr 109 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  x  e.  X )
36 iscnp 12368 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  ->  ( ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
3733, 34, 35, 36syl3anc 1216 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  (
( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )  <->  ( ( X  X.  { B } ) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
383, 32, 37mpbir2and 928 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x ) )
3938ralrimiva 2505 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K ) `  x ) )
40 cncnp 12399 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
41403adant3 1001 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
422, 39, 41mpbir2and 928 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   {csn 3527    X. cxp 4537   ran crn 4540    |` cres 4541   "cima 4542   -->wf 5119   ` cfv 5123  (class class class)co 5774  TopOnctopon 12177    Cn ccn 12354    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-cn 12357  df-cnp 12358
This theorem is referenced by:  cnconst  12403  cnmptc  12451
  Copyright terms: Public domain W3C validator