![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sinf | GIF version |
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
sinf | ⊢ sin:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sin 11675 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
2 | ax-icn 7923 | . . . . . 6 ⊢ i ∈ ℂ | |
3 | mulcl 7955 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ) | |
4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ) |
5 | efcl 11689 | . . . . 5 ⊢ ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) |
7 | negicn 8175 | . . . . . 6 ⊢ -i ∈ ℂ | |
8 | mulcl 7955 | . . . . . 6 ⊢ ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ) | |
9 | 7, 8 | mpan 424 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ) |
10 | efcl 11689 | . . . . 5 ⊢ ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) |
12 | 6, 11 | subcld 8285 | . . 3 ⊢ (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ) |
13 | 2mulicn 9158 | . . . 4 ⊢ (2 · i) ∈ ℂ | |
14 | 2muliap0 9160 | . . . 4 ⊢ (2 · i) # 0 | |
15 | divclap 8652 | . . . 4 ⊢ ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) | |
16 | 13, 14, 15 | mp3an23 1339 | . . 3 ⊢ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) |
17 | 12, 16 | syl 14 | . 2 ⊢ (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) |
18 | 1, 17 | fmpti 5683 | 1 ⊢ sin:ℂ⟶ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 class class class wbr 4017 ⟶wf 5226 ‘cfv 5230 (class class class)co 5890 ℂcc 7826 0cc0 7828 ici 7830 · cmul 7833 − cmin 8145 -cneg 8146 # cap 8555 / cdiv 8646 2c2 8987 expce 11667 sincsin 11669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-iinf 4601 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-mulrcl 7927 ax-addcom 7928 ax-mulcom 7929 ax-addass 7930 ax-mulass 7931 ax-distr 7932 ax-i2m1 7933 ax-0lt1 7934 ax-1rid 7935 ax-0id 7936 ax-rnegex 7937 ax-precex 7938 ax-cnre 7939 ax-pre-ltirr 7940 ax-pre-ltwlin 7941 ax-pre-lttrn 7942 ax-pre-apti 7943 ax-pre-ltadd 7944 ax-pre-mulgt0 7945 ax-pre-mulext 7946 ax-arch 7947 ax-caucvg 7948 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-if 3549 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-tr 4116 df-id 4307 df-po 4310 df-iso 4311 df-iord 4380 df-on 4382 df-ilim 4383 df-suc 4385 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-isom 5239 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-recs 6323 df-irdg 6388 df-frec 6409 df-1o 6434 df-oadd 6438 df-er 6552 df-en 6758 df-dom 6759 df-fin 6760 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 df-sub 8147 df-neg 8148 df-reap 8549 df-ap 8556 df-div 8647 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-n0 9194 df-z 9271 df-uz 9546 df-q 9637 df-rp 9671 df-ico 9911 df-fz 10026 df-fzo 10160 df-seqfrec 10463 df-exp 10537 df-fac 10723 df-ihash 10773 df-cj 10868 df-re 10869 df-im 10870 df-rsqrt 11024 df-abs 11025 df-clim 11304 df-sumdc 11379 df-ef 11673 df-sin 11675 |
This theorem is referenced by: sincl 11731 pilem1 14583 pilem3 14587 |
Copyright terms: Public domain | W3C validator |