ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinneg GIF version

Theorem sinneg 11071
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
sinneg (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))

Proof of Theorem sinneg
StepHypRef Expression
1 negcl 7736 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 sinval 11047 . . 3 (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
31, 2syl 14 . 2 (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
4 sinval 11047 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
54negeqd 7731 . . . 4 (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
6 ax-icn 7494 . . . . . . . 8 i ∈ ℂ
7 mulcl 7523 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
86, 7mpan 416 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
9 efcl 11008 . . . . . . 7 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
108, 9syl 14 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
11 negicn 7737 . . . . . . . 8 -i ∈ ℂ
12 mulcl 7523 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1311, 12mpan 416 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
14 efcl 11008 . . . . . . 7 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1513, 14syl 14 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1610, 15subcld 7847 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
17 2mulicn 8692 . . . . . 6 (2 · i) ∈ ℂ
18 2muliap0 8694 . . . . . 6 (2 · i) # 0
19 divnegap 8227 . . . . . 6 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2017, 18, 19mp3an23 1266 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2116, 20syl 14 . . . 4 (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
225, 21eqtrd 2121 . . 3 (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
23 mulneg12 7929 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
246, 23mpan 416 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2524eqcomd 2094 . . . . . . 7 (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴))
2625fveq2d 5322 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴)))
27 mul2neg 7930 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴))
286, 27mpan 416 . . . . . . 7 (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴))
2928fveq2d 5322 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴)))
3026, 29oveq12d 5684 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3110, 15negsubdi2d 7863 . . . . 5 (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3230, 31eqtr4d 2124 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))
3332oveq1d 5681 . . 3 (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3422, 33eqtr4d 2124 . 2 (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
353, 34eqtr4d 2124 1 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439   class class class wbr 3851  cfv 5028  (class class class)co 5666  cc 7402  0cc0 7404  ici 7406   · cmul 7409  cmin 7707  -cneg 7708   # cap 8112   / cdiv 8193  2c2 8527  expce 10986  sincsin 10988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517  ax-arch 7518  ax-caucvg 7519
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-3 8536  df-4 8537  df-n0 8728  df-z 8805  df-uz 9074  df-q 9159  df-rp 9189  df-ico 9366  df-fz 9479  df-fzo 9608  df-iseq 9907  df-seq3 9908  df-exp 10009  df-fac 10188  df-ihash 10238  df-cj 10330  df-re 10331  df-im 10332  df-rsqrt 10485  df-abs 10486  df-clim 10721  df-isum 10797  df-ef 10992  df-sin 10994
This theorem is referenced by:  tannegap  11073  sin0  11074  efmival  11078  sinsub  11085  cossub  11086  sincossq  11093
  Copyright terms: Public domain W3C validator