Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sinneg | GIF version |
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
sinneg | ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8098 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | sinval 11643 | . . 3 ⊢ (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) |
4 | sinval 11643 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
5 | 4 | negeqd 8093 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
6 | ax-icn 7848 | . . . . . . . 8 ⊢ i ∈ ℂ | |
7 | mulcl 7880 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
8 | 6, 7 | mpan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
9 | efcl 11605 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) |
11 | negicn 8099 | . . . . . . . 8 ⊢ -i ∈ ℂ | |
12 | mulcl 7880 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
13 | 11, 12 | mpan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
14 | efcl 11605 | . . . . . . 7 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) |
16 | 10, 15 | subcld 8209 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) |
17 | 2mulicn 9079 | . . . . . 6 ⊢ (2 · i) ∈ ℂ | |
18 | 2muliap0 9081 | . . . . . 6 ⊢ (2 · i) # 0 | |
19 | divnegap 8602 | . . . . . 6 ⊢ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
20 | 17, 18, 19 | mp3an23 1319 | . . . . 5 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
21 | 16, 20 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
22 | 5, 21 | eqtrd 2198 | . . 3 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
23 | mulneg12 8295 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
24 | 6, 23 | mpan 421 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) |
25 | 24 | eqcomd 2171 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴)) |
26 | 25 | fveq2d 5490 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴))) |
27 | mul2neg 8296 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴)) | |
28 | 6, 27 | mpan 421 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴)) |
29 | 28 | fveq2d 5490 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴))) |
30 | 26, 29 | oveq12d 5860 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) |
31 | 10, 15 | negsubdi2d 8225 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) |
32 | 30, 31 | eqtr4d 2201 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
33 | 32 | oveq1d 5857 | . . 3 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
34 | 22, 33 | eqtr4d 2201 | . 2 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) |
35 | 3, 34 | eqtr4d 2201 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 0cc0 7753 ici 7755 · cmul 7758 − cmin 8069 -cneg 8070 # cap 8479 / cdiv 8568 2c2 8908 expce 11583 sincsin 11585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-sin 11591 |
This theorem is referenced by: tannegap 11669 sin0 11670 efmival 11674 sinsub 11681 cossub 11682 sincossq 11689 sin2pim 13374 |
Copyright terms: Public domain | W3C validator |