| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sinneg | GIF version | ||
| Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| sinneg | ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negcl 8226 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 2 | sinval 11867 | . . 3 ⊢ (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) | 
| 4 | sinval 11867 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
| 5 | 4 | negeqd 8221 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | 
| 6 | ax-icn 7974 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 7 | mulcl 8006 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 8 | 6, 7 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) | 
| 9 | efcl 11829 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
| 10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | 
| 11 | negicn 8227 | . . . . . . . 8 ⊢ -i ∈ ℂ | |
| 12 | mulcl 8006 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
| 13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) | 
| 14 | efcl 11829 | . . . . . . 7 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
| 15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | 
| 16 | 10, 15 | subcld 8337 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) | 
| 17 | 2mulicn 9213 | . . . . . 6 ⊢ (2 · i) ∈ ℂ | |
| 18 | 2muliap0 9215 | . . . . . 6 ⊢ (2 · i) # 0 | |
| 19 | divnegap 8733 | . . . . . 6 ⊢ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
| 20 | 17, 18, 19 | mp3an23 1340 | . . . . 5 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | 
| 21 | 16, 20 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | 
| 22 | 5, 21 | eqtrd 2229 | . . 3 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | 
| 23 | mulneg12 8423 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
| 24 | 6, 23 | mpan 424 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) | 
| 25 | 24 | eqcomd 2202 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴)) | 
| 26 | 25 | fveq2d 5562 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴))) | 
| 27 | mul2neg 8424 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴)) | |
| 28 | 6, 27 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴)) | 
| 29 | 28 | fveq2d 5562 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴))) | 
| 30 | 26, 29 | oveq12d 5940 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) | 
| 31 | 10, 15 | negsubdi2d 8353 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) | 
| 32 | 30, 31 | eqtr4d 2232 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) | 
| 33 | 32 | oveq1d 5937 | . . 3 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | 
| 34 | 22, 33 | eqtr4d 2232 | . 2 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) | 
| 35 | 3, 34 | eqtr4d 2232 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 ici 7881 · cmul 7884 − cmin 8197 -cneg 8198 # cap 8608 / cdiv 8699 2c2 9041 expce 11807 sincsin 11809 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 | 
| This theorem is referenced by: tannegap 11893 sin0 11894 efmival 11898 sinsub 11905 cossub 11906 sincossq 11913 sin2pim 15049 | 
| Copyright terms: Public domain | W3C validator |