![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sincn | GIF version |
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
sincn | ⊢ sin ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sin 11796 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
2 | eqid 2193 | . . . . . . . 8 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
3 | 2 | subcncntop 14742 | . . . . . . . . 9 ⊢ − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))) |
4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (⊤ → − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))) |
5 | efcn 14944 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
6 | 5 | a1i 9 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
7 | ax-icn 7969 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
8 | eqid 2193 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
9 | 8 | mulc1cncf 14768 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
10 | 7, 9 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 6, 10 | cncfmpt1f 14777 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
12 | negicn 8222 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
13 | eqid 2193 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
14 | 13 | mulc1cncf 14768 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
15 | 12, 14 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
16 | 6, 15 | cncfmpt1f 14777 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
17 | 2, 4, 11, 16 | cncfmpt2fcntop 14778 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
18 | cncff 14756 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
20 | eqid 2193 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) | |
21 | 20 | fmpt 5709 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
22 | 19, 21 | sylibr 134 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ) |
23 | eqidd 2194 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) | |
24 | eqidd 2194 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))) | |
25 | oveq1 5926 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
26 | 22, 23, 24, 25 | fmptcof 5726 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))) |
27 | 2mulicn 9207 | . . . . . . 7 ⊢ (2 · i) ∈ ℂ | |
28 | 2muliap0 9209 | . . . . . . 7 ⊢ (2 · i) # 0 | |
29 | eqid 2193 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) | |
30 | 29 | divccncfap 14769 | . . . . . . 7 ⊢ (((2 · i) ∈ ℂ ∧ (2 · i) # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)) |
31 | 27, 28, 30 | mp2an 426 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 9 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)) |
33 | 17, 32 | cncfco 14770 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
34 | 26, 33 | eqeltrrd 2271 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)) |
35 | 34 | mptru 1373 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ) |
36 | 1, 35 | eqeltri 2266 | 1 ⊢ sin ∈ (ℂ–cn→ℂ) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 ↦ cmpt 4091 ∘ ccom 4664 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 0cc0 7874 ici 7876 · cmul 7879 − cmin 8192 -cneg 8193 # cap 8602 / cdiv 8693 2c2 9035 abscabs 11144 expce 11788 sincsin 11790 MetOpencmopn 14040 Cn ccn 14364 ×t ctx 14431 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ico 9963 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |