ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincn GIF version

Theorem sincn 15437
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn sin ∈ (ℂ–cn→ℂ)

Proof of Theorem sincn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 12156 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 eqid 2229 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32subcncntop 15231 . . . . . . . . 9 − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))
43a1i 9 . . . . . . . 8 (⊤ → − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))))
5 efcn 15436 . . . . . . . . . 10 exp ∈ (ℂ–cn→ℂ)
65a1i 9 . . . . . . . . 9 (⊤ → exp ∈ (ℂ–cn→ℂ))
7 ax-icn 8090 . . . . . . . . . 10 i ∈ ℂ
8 eqid 2229 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥))
98mulc1cncf 15257 . . . . . . . . . 10 (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10cncfmpt1f 15266 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ))
12 negicn 8343 . . . . . . . . . 10 -i ∈ ℂ
13 eqid 2229 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥))
1413mulc1cncf 15257 . . . . . . . . . 10 (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
1512, 14mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
166, 15cncfmpt1f 15266 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ))
172, 4, 11, 16cncfmpt2fcntop 15267 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ))
18 cncff 15245 . . . . . . 7 ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
1917, 18syl 14 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
20 eqid 2229 . . . . . . 7 (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))
2120fmpt 5784 . . . . . 6 (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
2219, 21sylibr 134 . . . . 5 (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
23 eqidd 2230 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))))
24 eqidd 2230 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))))
25 oveq1 6007 . . . . 5 (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2622, 23, 24, 25fmptcof 5801 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))))
27 2mulicn 9329 . . . . . . 7 (2 · i) ∈ ℂ
28 2muliap0 9331 . . . . . . 7 (2 · i) # 0
29 eqid 2229 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))
3029divccncfap 15258 . . . . . . 7 (((2 · i) ∈ ℂ ∧ (2 · i) # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3127, 28, 30mp2an 426 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)
3231a1i 9 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3317, 32cncfco 15259 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ))
3426, 33eqeltrrd 2307 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ))
3534mptru 1404 . 2 (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)
361, 35eqeltri 2302 1 sin ∈ (ℂ–cn→ℂ)
Colors of variables: wff set class
Syntax hints:  wtru 1396  wcel 2200  wral 2508   class class class wbr 4082  cmpt 4144  ccom 4722  wf 5313  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995  ici 7997   · cmul 8000  cmin 8313  -cneg 8314   # cap 8724   / cdiv 8815  2c2 9157  abscabs 11503  expce 12148  sincsin 12150  MetOpencmopn 14499   Cn ccn 14853   ×t ctx 14920  cnccncf 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator