Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincn GIF version

Theorem sincn 12921
 Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn sin ∈ (ℂ–cn→ℂ)

Proof of Theorem sincn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 11416 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 eqid 2140 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32subcncntop 12784 . . . . . . . . 9 − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))
43a1i 9 . . . . . . . 8 (⊤ → − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))))
5 efcn 12920 . . . . . . . . . 10 exp ∈ (ℂ–cn→ℂ)
65a1i 9 . . . . . . . . 9 (⊤ → exp ∈ (ℂ–cn→ℂ))
7 ax-icn 7762 . . . . . . . . . 10 i ∈ ℂ
8 eqid 2140 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥))
98mulc1cncf 12807 . . . . . . . . . 10 (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10cncfmpt1f 12815 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ))
12 negicn 8010 . . . . . . . . . 10 -i ∈ ℂ
13 eqid 2140 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥))
1413mulc1cncf 12807 . . . . . . . . . 10 (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
1512, 14mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
166, 15cncfmpt1f 12815 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ))
172, 4, 11, 16cncfmpt2fcntop 12816 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ))
18 cncff 12795 . . . . . . 7 ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
1917, 18syl 14 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
20 eqid 2140 . . . . . . 7 (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))
2120fmpt 5580 . . . . . 6 (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
2219, 21sylibr 133 . . . . 5 (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
23 eqidd 2141 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))))
24 eqidd 2141 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))))
25 oveq1 5791 . . . . 5 (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2622, 23, 24, 25fmptcof 5597 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))))
27 2mulicn 8989 . . . . . . 7 (2 · i) ∈ ℂ
28 2muliap0 8991 . . . . . . 7 (2 · i) # 0
29 eqid 2140 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))
3029divccncfap 12808 . . . . . . 7 (((2 · i) ∈ ℂ ∧ (2 · i) # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3127, 28, 30mp2an 423 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)
3231a1i 9 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3317, 32cncfco 12809 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ))
3426, 33eqeltrrd 2218 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ))
3534mptru 1341 . 2 (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)
361, 35eqeltri 2213 1 sin ∈ (ℂ–cn→ℂ)
 Colors of variables: wff set class Syntax hints:  ⊤wtru 1333   ∈ wcel 1481  ∀wral 2417   class class class wbr 3938   ↦ cmpt 3998   ∘ ccom 4553  ⟶wf 5129  ‘cfv 5133  (class class class)co 5784  ℂcc 7665  0cc0 7667  ici 7669   · cmul 7672   − cmin 7980  -cneg 7981   # cap 8390   / cdiv 8479  2c2 8818  abscabs 10824  expce 11408  sincsin 11410  MetOpencmopn 12216   Cn ccn 12416   ×t ctx 12483  –cn→ccncf 12788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7758  ax-resscn 7759  ax-1cn 7760  ax-1re 7761  ax-icn 7762  ax-addcl 7763  ax-addrcl 7764  ax-mulcl 7765  ax-mulrcl 7766  ax-addcom 7767  ax-mulcom 7768  ax-addass 7769  ax-mulass 7770  ax-distr 7771  ax-i2m1 7772  ax-0lt1 7773  ax-1rid 7774  ax-0id 7775  ax-rnegex 7776  ax-precex 7777  ax-cnre 7778  ax-pre-ltirr 7779  ax-pre-ltwlin 7780  ax-pre-lttrn 7781  ax-pre-apti 7782  ax-pre-ltadd 7783  ax-pre-mulgt0 7784  ax-pre-mulext 7785  ax-arch 7786  ax-caucvg 7787  ax-addf 7789  ax-mulf 7790 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-disj 3916  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4555  df-rel 4556  df-cnv 4557  df-co 4558  df-dm 4559  df-rn 4560  df-res 4561  df-ima 4562  df-iota 5098  df-fun 5135  df-fn 5136  df-f 5137  df-f1 5138  df-fo 5139  df-f1o 5140  df-fv 5141  df-isom 5142  df-riota 5740  df-ov 5787  df-oprab 5788  df-mpo 5789  df-of 5992  df-1st 6048  df-2nd 6049  df-recs 6212  df-irdg 6277  df-frec 6298  df-1o 6323  df-oadd 6327  df-er 6439  df-map 6554  df-pm 6555  df-en 6645  df-dom 6646  df-fin 6647  df-sup 6884  df-inf 6885  df-pnf 7849  df-mnf 7850  df-xr 7851  df-ltxr 7852  df-le 7853  df-sub 7982  df-neg 7983  df-reap 8384  df-ap 8391  df-div 8480  df-inn 8768  df-2 8826  df-3 8827  df-4 8828  df-n0 9025  df-z 9102  df-uz 9374  df-q 9462  df-rp 9494  df-xneg 9612  df-xadd 9613  df-ico 9730  df-fz 9845  df-fzo 9974  df-seqfrec 10273  df-exp 10347  df-fac 10527  df-bc 10549  df-ihash 10577  df-shft 10642  df-cj 10669  df-re 10670  df-im 10671  df-rsqrt 10825  df-abs 10826  df-clim 11103  df-sumdc 11178  df-ef 11414  df-sin 11416  df-rest 12184  df-topgen 12203  df-psmet 12218  df-xmet 12219  df-met 12220  df-bl 12221  df-mopn 12222  df-top 12227  df-topon 12240  df-bases 12272  df-ntr 12327  df-cn 12419  df-cnp 12420  df-tx 12484  df-cncf 12789  df-limced 12856  df-dvap 12857 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator