ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincn GIF version

Theorem sincn 15316
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn sin ∈ (ℂ–cn→ℂ)

Proof of Theorem sincn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 12036 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 eqid 2206 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32subcncntop 15110 . . . . . . . . 9 − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))
43a1i 9 . . . . . . . 8 (⊤ → − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))))
5 efcn 15315 . . . . . . . . . 10 exp ∈ (ℂ–cn→ℂ)
65a1i 9 . . . . . . . . 9 (⊤ → exp ∈ (ℂ–cn→ℂ))
7 ax-icn 8040 . . . . . . . . . 10 i ∈ ℂ
8 eqid 2206 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥))
98mulc1cncf 15136 . . . . . . . . . 10 (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10cncfmpt1f 15145 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ))
12 negicn 8293 . . . . . . . . . 10 -i ∈ ℂ
13 eqid 2206 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥))
1413mulc1cncf 15136 . . . . . . . . . 10 (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
1512, 14mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
166, 15cncfmpt1f 15145 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ))
172, 4, 11, 16cncfmpt2fcntop 15146 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ))
18 cncff 15124 . . . . . . 7 ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
1917, 18syl 14 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
20 eqid 2206 . . . . . . 7 (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))
2120fmpt 5743 . . . . . 6 (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
2219, 21sylibr 134 . . . . 5 (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
23 eqidd 2207 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))))
24 eqidd 2207 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))))
25 oveq1 5964 . . . . 5 (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2622, 23, 24, 25fmptcof 5760 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))))
27 2mulicn 9279 . . . . . . 7 (2 · i) ∈ ℂ
28 2muliap0 9281 . . . . . . 7 (2 · i) # 0
29 eqid 2206 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))
3029divccncfap 15137 . . . . . . 7 (((2 · i) ∈ ℂ ∧ (2 · i) # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3127, 28, 30mp2an 426 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)
3231a1i 9 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3317, 32cncfco 15138 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ))
3426, 33eqeltrrd 2284 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ))
3534mptru 1382 . 2 (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)
361, 35eqeltri 2279 1 sin ∈ (ℂ–cn→ℂ)
Colors of variables: wff set class
Syntax hints:  wtru 1374  wcel 2177  wral 2485   class class class wbr 4051  cmpt 4113  ccom 4687  wf 5276  cfv 5280  (class class class)co 5957  cc 7943  0cc0 7945  ici 7947   · cmul 7950  cmin 8263  -cneg 8264   # cap 8674   / cdiv 8765  2c2 9107  abscabs 11383  expce 12028  sincsin 12030  MetOpencmopn 14378   Cn ccn 14732   ×t ctx 14799  cnccncf 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ico 10036  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator