ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincn GIF version

Theorem sincn 14275
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn sin ∈ (ℂ–cn→ℂ)

Proof of Theorem sincn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 11660 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 eqid 2177 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32subcncntop 14138 . . . . . . . . 9 − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))
43a1i 9 . . . . . . . 8 (⊤ → − ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))))
5 efcn 14274 . . . . . . . . . 10 exp ∈ (ℂ–cn→ℂ)
65a1i 9 . . . . . . . . 9 (⊤ → exp ∈ (ℂ–cn→ℂ))
7 ax-icn 7908 . . . . . . . . . 10 i ∈ ℂ
8 eqid 2177 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥))
98mulc1cncf 14161 . . . . . . . . . 10 (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10cncfmpt1f 14169 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ))
12 negicn 8160 . . . . . . . . . 10 -i ∈ ℂ
13 eqid 2177 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥))
1413mulc1cncf 14161 . . . . . . . . . 10 (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
1512, 14mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
166, 15cncfmpt1f 14169 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ))
172, 4, 11, 16cncfmpt2fcntop 14170 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ))
18 cncff 14149 . . . . . . 7 ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
1917, 18syl 14 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
20 eqid 2177 . . . . . . 7 (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))
2120fmpt 5668 . . . . . 6 (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
2219, 21sylibr 134 . . . . 5 (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
23 eqidd 2178 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))))
24 eqidd 2178 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))))
25 oveq1 5884 . . . . 5 (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2622, 23, 24, 25fmptcof 5685 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))))
27 2mulicn 9143 . . . . . . 7 (2 · i) ∈ ℂ
28 2muliap0 9145 . . . . . . 7 (2 · i) # 0
29 eqid 2177 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))
3029divccncfap 14162 . . . . . . 7 (((2 · i) ∈ ℂ ∧ (2 · i) # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3127, 28, 30mp2an 426 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)
3231a1i 9 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ))
3317, 32cncfco 14163 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ))
3426, 33eqeltrrd 2255 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ))
3534mptru 1362 . 2 (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)
361, 35eqeltri 2250 1 sin ∈ (ℂ–cn→ℂ)
Colors of variables: wff set class
Syntax hints:  wtru 1354  wcel 2148  wral 2455   class class class wbr 4005  cmpt 4066  ccom 4632  wf 5214  cfv 5218  (class class class)co 5877  cc 7811  0cc0 7813  ici 7815   · cmul 7818  cmin 8130  -cneg 8131   # cap 8540   / cdiv 8631  2c2 8972  abscabs 11008  expce 11652  sincsin 11654  MetOpencmopn 13530   Cn ccn 13770   ×t ctx 13837  cnccncf 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-ntr 13681  df-cn 13773  df-cnp 13774  df-tx 13838  df-cncf 14143  df-limced 14210  df-dvap 14211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator