ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efival GIF version

Theorem efival 11439
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 7715 . . . . . 6 i ∈ ℂ
2 mulcl 7747 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 420 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efcl 11370 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
53, 4syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
6 negicn 7963 . . . . . 6 -i ∈ ℂ
7 mulcl 7747 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
86, 7mpan 420 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
9 efcl 11370 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
108, 9syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
115, 10addcld 7785 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
125, 10subcld 8073 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
13 2cn 8791 . . . . 5 2 ∈ ℂ
14 2ap0 8813 . . . . 5 2 # 0
1513, 14pm3.2i 270 . . . 4 (2 ∈ ℂ ∧ 2 # 0)
16 divdirap 8457 . . . 4 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1715, 16mp3an3 1304 . . 3 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1811, 12, 17syl2anc 408 . 2 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1910, 5pncan3d 8076 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (exp‘(i · 𝐴)))
2019oveq2d 5790 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
215, 10, 12addassd 7788 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))))
2252timesd 8962 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
2320, 21, 223eqtr4d 2182 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (2 · (exp‘(i · 𝐴))))
2423oveq1d 5789 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((2 · (exp‘(i · 𝐴))) / 2))
25 divcanap3 8458 . . . . 5 (((exp‘(i · 𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2613, 14, 25mp3an23 1307 . . . 4 ((exp‘(i · 𝐴)) ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
275, 26syl 14 . . 3 (𝐴 ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2824, 27eqtr2d 2173 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2))
29 cosval 11410 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
30 2mulicn 8942 . . . . . . 7 (2 · i) ∈ ℂ
31 2muliap0 8944 . . . . . . 7 (2 · i) # 0
3230, 31pm3.2i 270 . . . . . 6 ((2 · i) ∈ ℂ ∧ (2 · i) # 0)
33 div12ap 8454 . . . . . 6 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((2 · i) ∈ ℂ ∧ (2 · i) # 0)) → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
341, 32, 33mp3an13 1306 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
3512, 34syl 14 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
36 sinval 11409 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3736oveq2d 5790 . . . 4 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))))
38 divrecap 8448 . . . . . . 7 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
3913, 14, 38mp3an23 1307 . . . . . 6 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
4012, 39syl 14 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
411mulid2i 7769 . . . . . . . 8 (1 · i) = i
4241oveq1i 5784 . . . . . . 7 ((1 · i) / (2 · i)) = (i / (2 · i))
43 iap0 8943 . . . . . . . . . . 11 i # 0
441, 43dividapi 8505 . . . . . . . . . 10 (i / i) = 1
4544oveq2i 5785 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 / 2) · 1)
46 ax-1cn 7713 . . . . . . . . . 10 1 ∈ ℂ
4746, 13, 1, 1, 14, 43divmuldivapi 8532 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 · i) / (2 · i))
4845, 47eqtr3i 2162 . . . . . . . 8 ((1 / 2) · 1) = ((1 · i) / (2 · i))
49 halfcn 8934 . . . . . . . . 9 (1 / 2) ∈ ℂ
5049mulid1i 7768 . . . . . . . 8 ((1 / 2) · 1) = (1 / 2)
5148, 50eqtr3i 2162 . . . . . . 7 ((1 · i) / (2 · i)) = (1 / 2)
5242, 51eqtr3i 2162 . . . . . 6 (i / (2 · i)) = (1 / 2)
5352oveq2i 5785 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2))
5440, 53syl6eqr 2190 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
5535, 37, 543eqtr4d 2182 . . 3 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2))
5629, 55oveq12d 5792 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
5718, 28, 563eqtr4d 2182 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621  ici 7622   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  2c2 8771  expce 11348  sincsin 11350  cosccos 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357
This theorem is referenced by:  efmival  11440  efeul  11441  efieq  11442  sinadd  11443  cosadd  11444  absefi  11475  demoivre  11479  efhalfpi  12880  efipi  12882  ef2pi  12886  efimpi  12900
  Copyright terms: Public domain W3C validator