ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efival GIF version

Theorem efival 11962
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 8002 . . . . . 6 i ∈ ℂ
2 mulcl 8034 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 424 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efcl 11894 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
53, 4syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
6 negicn 8255 . . . . . 6 -i ∈ ℂ
7 mulcl 8034 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
86, 7mpan 424 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
9 efcl 11894 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
108, 9syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
115, 10addcld 8074 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
125, 10subcld 8365 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
13 2cn 9089 . . . . 5 2 ∈ ℂ
14 2ap0 9111 . . . . 5 2 # 0
1513, 14pm3.2i 272 . . . 4 (2 ∈ ℂ ∧ 2 # 0)
16 divdirap 8752 . . . 4 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1715, 16mp3an3 1338 . . 3 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1811, 12, 17syl2anc 411 . 2 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1910, 5pncan3d 8368 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (exp‘(i · 𝐴)))
2019oveq2d 5950 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
215, 10, 12addassd 8077 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))))
2252timesd 9262 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
2320, 21, 223eqtr4d 2247 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (2 · (exp‘(i · 𝐴))))
2423oveq1d 5949 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((2 · (exp‘(i · 𝐴))) / 2))
25 divcanap3 8753 . . . . 5 (((exp‘(i · 𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2613, 14, 25mp3an23 1341 . . . 4 ((exp‘(i · 𝐴)) ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
275, 26syl 14 . . 3 (𝐴 ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2824, 27eqtr2d 2238 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2))
29 cosval 11933 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
30 2mulicn 9241 . . . . . . 7 (2 · i) ∈ ℂ
31 2muliap0 9243 . . . . . . 7 (2 · i) # 0
3230, 31pm3.2i 272 . . . . . 6 ((2 · i) ∈ ℂ ∧ (2 · i) # 0)
33 div12ap 8749 . . . . . 6 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((2 · i) ∈ ℂ ∧ (2 · i) # 0)) → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
341, 32, 33mp3an13 1340 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
3512, 34syl 14 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
36 sinval 11932 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3736oveq2d 5950 . . . 4 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))))
38 divrecap 8743 . . . . . . 7 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
3913, 14, 38mp3an23 1341 . . . . . 6 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
4012, 39syl 14 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
411mullidi 8057 . . . . . . . 8 (1 · i) = i
4241oveq1i 5944 . . . . . . 7 ((1 · i) / (2 · i)) = (i / (2 · i))
43 iap0 9242 . . . . . . . . . . 11 i # 0
441, 43dividapi 8800 . . . . . . . . . 10 (i / i) = 1
4544oveq2i 5945 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 / 2) · 1)
46 ax-1cn 8000 . . . . . . . . . 10 1 ∈ ℂ
4746, 13, 1, 1, 14, 43divmuldivapi 8827 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 · i) / (2 · i))
4845, 47eqtr3i 2227 . . . . . . . 8 ((1 / 2) · 1) = ((1 · i) / (2 · i))
49 halfcn 9233 . . . . . . . . 9 (1 / 2) ∈ ℂ
5049mulridi 8056 . . . . . . . 8 ((1 / 2) · 1) = (1 / 2)
5148, 50eqtr3i 2227 . . . . . . 7 ((1 · i) / (2 · i)) = (1 / 2)
5242, 51eqtr3i 2227 . . . . . 6 (i / (2 · i)) = (1 / 2)
5352oveq2i 5945 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2))
5440, 53eqtr4di 2255 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
5535, 37, 543eqtr4d 2247 . . 3 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2))
5629, 55oveq12d 5952 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
5718, 28, 563eqtr4d 2247 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907  1c1 7908  ici 7909   + caddc 7910   · cmul 7912  cmin 8225  -cneg 8226   # cap 8636   / cdiv 8727  2c2 9069  expce 11872  sincsin 11874  cosccos 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-ico 9998  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880  df-cos 11881
This theorem is referenced by:  efmival  11963  efeul  11964  efieq  11965  sinadd  11966  cosadd  11967  absefi  11999  demoivre  12003  efhalfpi  15189  efipi  15191  ef2pi  15195  efimpi  15209
  Copyright terms: Public domain W3C validator