ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efival GIF version

Theorem efival 11775
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 7937 . . . . . 6 i ∈ ℂ
2 mulcl 7969 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 424 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efcl 11707 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
53, 4syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
6 negicn 8189 . . . . . 6 -i ∈ ℂ
7 mulcl 7969 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
86, 7mpan 424 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
9 efcl 11707 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
108, 9syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
115, 10addcld 8008 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
125, 10subcld 8299 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
13 2cn 9021 . . . . 5 2 ∈ ℂ
14 2ap0 9043 . . . . 5 2 # 0
1513, 14pm3.2i 272 . . . 4 (2 ∈ ℂ ∧ 2 # 0)
16 divdirap 8685 . . . 4 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1715, 16mp3an3 1337 . . 3 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1811, 12, 17syl2anc 411 . 2 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1910, 5pncan3d 8302 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (exp‘(i · 𝐴)))
2019oveq2d 5913 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
215, 10, 12addassd 8011 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))))
2252timesd 9192 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
2320, 21, 223eqtr4d 2232 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (2 · (exp‘(i · 𝐴))))
2423oveq1d 5912 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((2 · (exp‘(i · 𝐴))) / 2))
25 divcanap3 8686 . . . . 5 (((exp‘(i · 𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2613, 14, 25mp3an23 1340 . . . 4 ((exp‘(i · 𝐴)) ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
275, 26syl 14 . . 3 (𝐴 ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2824, 27eqtr2d 2223 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2))
29 cosval 11746 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
30 2mulicn 9172 . . . . . . 7 (2 · i) ∈ ℂ
31 2muliap0 9174 . . . . . . 7 (2 · i) # 0
3230, 31pm3.2i 272 . . . . . 6 ((2 · i) ∈ ℂ ∧ (2 · i) # 0)
33 div12ap 8682 . . . . . 6 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((2 · i) ∈ ℂ ∧ (2 · i) # 0)) → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
341, 32, 33mp3an13 1339 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
3512, 34syl 14 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
36 sinval 11745 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3736oveq2d 5913 . . . 4 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))))
38 divrecap 8676 . . . . . . 7 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
3913, 14, 38mp3an23 1340 . . . . . 6 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
4012, 39syl 14 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
411mullidi 7991 . . . . . . . 8 (1 · i) = i
4241oveq1i 5907 . . . . . . 7 ((1 · i) / (2 · i)) = (i / (2 · i))
43 iap0 9173 . . . . . . . . . . 11 i # 0
441, 43dividapi 8733 . . . . . . . . . 10 (i / i) = 1
4544oveq2i 5908 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 / 2) · 1)
46 ax-1cn 7935 . . . . . . . . . 10 1 ∈ ℂ
4746, 13, 1, 1, 14, 43divmuldivapi 8760 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 · i) / (2 · i))
4845, 47eqtr3i 2212 . . . . . . . 8 ((1 / 2) · 1) = ((1 · i) / (2 · i))
49 halfcn 9164 . . . . . . . . 9 (1 / 2) ∈ ℂ
5049mulid1i 7990 . . . . . . . 8 ((1 / 2) · 1) = (1 / 2)
5148, 50eqtr3i 2212 . . . . . . 7 ((1 · i) / (2 · i)) = (1 / 2)
5242, 51eqtr3i 2212 . . . . . 6 (i / (2 · i)) = (1 / 2)
5352oveq2i 5908 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2))
5440, 53eqtr4di 2240 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
5535, 37, 543eqtr4d 2232 . . 3 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2))
5629, 55oveq12d 5915 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
5718, 28, 563eqtr4d 2232 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  0cc0 7842  1c1 7843  ici 7844   + caddc 7845   · cmul 7847  cmin 8159  -cneg 8160   # cap 8569   / cdiv 8660  2c2 9001  expce 11685  sincsin 11687  cosccos 11688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-sin 11693  df-cos 11694
This theorem is referenced by:  efmival  11776  efeul  11777  efieq  11778  sinadd  11779  cosadd  11780  absefi  11811  demoivre  11815  efhalfpi  14697  efipi  14699  ef2pi  14703  efimpi  14717
  Copyright terms: Public domain W3C validator