ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imval2 GIF version

Theorem imval2 10659
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))

Proof of Theorem imval2
StepHypRef Expression
1 imcl 10619 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21recnd 7787 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
3 2mulicn 8935 . . . 4 (2 · i) ∈ ℂ
4 2muliap0 8937 . . . 4 (2 · i) # 0
5 divcanap4 8452 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
63, 4, 5mp3an23 1307 . . 3 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
72, 6syl 14 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
8 recl 10618 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
98recnd 7787 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
10 ax-icn 7708 . . . . . . 7 i ∈ ℂ
11 mulcl 7740 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1210, 2, 11sylancr 410 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
139, 12addcld 7778 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
1413, 9, 12subsubd 8094 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
15 replim 10624 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
16 remim 10625 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
1715, 16oveq12d 5785 . . . 4 (𝐴 ∈ ℂ → (𝐴 − (∗‘𝐴)) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
18122timesd 8955 . . . . 5 (𝐴 ∈ ℂ → (2 · (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
19 mulcom 7742 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ) → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
203, 19mpan2 421 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
21 2cn 8784 . . . . . . . 8 2 ∈ ℂ
22 mulass 7744 . . . . . . . 8 ((2 ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2321, 10, 22mp3an12 1305 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2420, 23eqtrd 2170 . . . . . 6 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
252, 24syl 14 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
269, 12pncan2d 8068 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) = (i · (ℑ‘𝐴)))
2726oveq1d 5782 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
2818, 25, 273eqtr4d 2180 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
2914, 17, 283eqtr4rd 2181 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (𝐴 − (∗‘𝐴)))
3029oveq1d 5782 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
317, 30eqtr3d 2172 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  0cc0 7613  ici 7615   + caddc 7616   · cmul 7618  cmin 7926   # cap 8336   / cdiv 8425  2c2 8764  ccj 10604  cre 10605  cim 10606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609
This theorem is referenced by:  resinval  11411
  Copyright terms: Public domain W3C validator