ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imval2 GIF version

Theorem imval2 10836
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))

Proof of Theorem imval2
StepHypRef Expression
1 imcl 10796 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21recnd 7927 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
3 2mulicn 9079 . . . 4 (2 · i) ∈ ℂ
4 2muliap0 9081 . . . 4 (2 · i) # 0
5 divcanap4 8595 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) # 0) → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
63, 4, 5mp3an23 1319 . . 3 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
72, 6syl 14 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
8 recl 10795 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
98recnd 7927 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
10 ax-icn 7848 . . . . . . 7 i ∈ ℂ
11 mulcl 7880 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1210, 2, 11sylancr 411 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
139, 12addcld 7918 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
1413, 9, 12subsubd 8237 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
15 replim 10801 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
16 remim 10802 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
1715, 16oveq12d 5860 . . . 4 (𝐴 ∈ ℂ → (𝐴 − (∗‘𝐴)) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
18122timesd 9099 . . . . 5 (𝐴 ∈ ℂ → (2 · (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
19 mulcom 7882 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ) → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
203, 19mpan2 422 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
21 2cn 8928 . . . . . . . 8 2 ∈ ℂ
22 mulass 7884 . . . . . . . 8 ((2 ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2321, 10, 22mp3an12 1317 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2420, 23eqtrd 2198 . . . . . 6 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
252, 24syl 14 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
269, 12pncan2d 8211 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) = (i · (ℑ‘𝐴)))
2726oveq1d 5857 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
2818, 25, 273eqtr4d 2208 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
2914, 17, 283eqtr4rd 2209 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (𝐴 − (∗‘𝐴)))
3029oveq1d 5857 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
317, 30eqtr3d 2200 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  ici 7755   + caddc 7756   · cmul 7758  cmin 8069   # cap 8479   / cdiv 8568  2c2 8908  ccj 10781  cre 10782  cim 10783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-cj 10784  df-re 10785  df-im 10786
This theorem is referenced by:  resinval  11656
  Copyright terms: Public domain W3C validator