ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imval2 GIF version

Theorem imval2 10905
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) = ((๐ด โˆ’ (โˆ—โ€˜๐ด)) / (2 ยท i)))

Proof of Theorem imval2
StepHypRef Expression
1 imcl 10865 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
21recnd 7988 . . 3 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„‚)
3 2mulicn 9143 . . . 4 (2 ยท i) โˆˆ โ„‚
4 2muliap0 9145 . . . 4 (2 ยท i) # 0
5 divcanap4 8658 . . . 4 (((โ„‘โ€˜๐ด) โˆˆ โ„‚ โˆง (2 ยท i) โˆˆ โ„‚ โˆง (2 ยท i) # 0) โ†’ (((โ„‘โ€˜๐ด) ยท (2 ยท i)) / (2 ยท i)) = (โ„‘โ€˜๐ด))
63, 4, 5mp3an23 1329 . . 3 ((โ„‘โ€˜๐ด) โˆˆ โ„‚ โ†’ (((โ„‘โ€˜๐ด) ยท (2 ยท i)) / (2 ยท i)) = (โ„‘โ€˜๐ด))
72, 6syl 14 . 2 (๐ด โˆˆ โ„‚ โ†’ (((โ„‘โ€˜๐ด) ยท (2 ยท i)) / (2 ยท i)) = (โ„‘โ€˜๐ด))
8 recl 10864 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
98recnd 7988 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„‚)
10 ax-icn 7908 . . . . . . 7 i โˆˆ โ„‚
11 mulcl 7940 . . . . . . 7 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ด) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
1210, 2, 11sylancr 414 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
139, 12addcld 7979 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆˆ โ„‚)
1413, 9, 12subsubd 8298 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ ((โ„œโ€˜๐ด) โˆ’ (i ยท (โ„‘โ€˜๐ด)))) = ((((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ (โ„œโ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ด))))
15 replim 10870 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
16 remim 10871 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (โˆ—โ€˜๐ด) = ((โ„œโ€˜๐ด) โˆ’ (i ยท (โ„‘โ€˜๐ด))))
1715, 16oveq12d 5895 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆ’ (โˆ—โ€˜๐ด)) = (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ ((โ„œโ€˜๐ด) โˆ’ (i ยท (โ„‘โ€˜๐ด)))))
18122timesd 9163 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (2 ยท (i ยท (โ„‘โ€˜๐ด))) = ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ด))))
19 mulcom 7942 . . . . . . . 8 (((โ„‘โ€˜๐ด) โˆˆ โ„‚ โˆง (2 ยท i) โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = ((2 ยท i) ยท (โ„‘โ€˜๐ด)))
203, 19mpan2 425 . . . . . . 7 ((โ„‘โ€˜๐ด) โˆˆ โ„‚ โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = ((2 ยท i) ยท (โ„‘โ€˜๐ด)))
21 2cn 8992 . . . . . . . 8 2 โˆˆ โ„‚
22 mulass 7944 . . . . . . . 8 ((2 โˆˆ โ„‚ โˆง i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ด) โˆˆ โ„‚) โ†’ ((2 ยท i) ยท (โ„‘โ€˜๐ด)) = (2 ยท (i ยท (โ„‘โ€˜๐ด))))
2321, 10, 22mp3an12 1327 . . . . . . 7 ((โ„‘โ€˜๐ด) โˆˆ โ„‚ โ†’ ((2 ยท i) ยท (โ„‘โ€˜๐ด)) = (2 ยท (i ยท (โ„‘โ€˜๐ด))))
2420, 23eqtrd 2210 . . . . . 6 ((โ„‘โ€˜๐ด) โˆˆ โ„‚ โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = (2 ยท (i ยท (โ„‘โ€˜๐ด))))
252, 24syl 14 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = (2 ยท (i ยท (โ„‘โ€˜๐ด))))
269, 12pncan2d 8272 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ (โ„œโ€˜๐ด)) = (i ยท (โ„‘โ€˜๐ด)))
2726oveq1d 5892 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ((((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ (โ„œโ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ด))) = ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ด))))
2818, 25, 273eqtr4d 2220 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = ((((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) โˆ’ (โ„œโ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ด))))
2914, 17, 283eqtr4rd 2221 . . 3 (๐ด โˆˆ โ„‚ โ†’ ((โ„‘โ€˜๐ด) ยท (2 ยท i)) = (๐ด โˆ’ (โˆ—โ€˜๐ด)))
3029oveq1d 5892 . 2 (๐ด โˆˆ โ„‚ โ†’ (((โ„‘โ€˜๐ด) ยท (2 ยท i)) / (2 ยท i)) = ((๐ด โˆ’ (โˆ—โ€˜๐ด)) / (2 ยท i)))
317, 30eqtr3d 2212 1 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) = ((๐ด โˆ’ (โˆ—โ€˜๐ด)) / (2 ยท i)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5877  โ„‚cc 7811  0cc0 7813  ici 7815   + caddc 7816   ยท cmul 7818   โˆ’ cmin 8130   # cap 8540   / cdiv 8631  2c2 8972  โˆ—ccj 10850  โ„œcre 10851  โ„‘cim 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-2 8980  df-cj 10853  df-re 10854  df-im 10855
This theorem is referenced by:  resinval  11725
  Copyright terms: Public domain W3C validator