ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinadd GIF version

Theorem sinadd 11779
Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))

Proof of Theorem sinadd
StepHypRef Expression
1 addcl 7967 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 sinval 11745 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (sin‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)))
31, 2syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)))
4 2cn 9021 . . . . . . 7 2 ∈ ℂ
54a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
6 ax-icn 7937 . . . . . . 7 i ∈ ℂ
76a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
8 coscl 11750 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
98adantr 276 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
10 sincl 11749 . . . . . . . . 9 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
1110adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
129, 11mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘𝐵)) ∈ ℂ)
13 sincl 11749 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1413adantr 276 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
15 coscl 11750 . . . . . . . . 9 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
1615adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
1714, 16mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) ∈ ℂ)
1812, 17addcld 8008 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))) ∈ ℂ)
195, 7, 18mulassd 8012 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))))
207, 12, 17adddid 8013 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = ((i · ((cos‘𝐴) · (sin‘𝐵))) + (i · ((sin‘𝐴) · (cos‘𝐵)))))
217, 9, 11mul12d 8140 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((cos‘𝐴) · (sin‘𝐵))) = ((cos‘𝐴) · (i · (sin‘𝐵))))
2214, 16mulcomd 8010 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = ((cos‘𝐵) · (sin‘𝐴)))
2322oveq2d 5913 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((sin‘𝐴) · (cos‘𝐵))) = (i · ((cos‘𝐵) · (sin‘𝐴))))
247, 16, 14mul12d 8140 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((cos‘𝐵) · (sin‘𝐴))) = ((cos‘𝐵) · (i · (sin‘𝐴))))
2523, 24eqtrd 2222 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((sin‘𝐴) · (cos‘𝐵))) = ((cos‘𝐵) · (i · (sin‘𝐴))))
2621, 25oveq12d 5915 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((cos‘𝐴) · (sin‘𝐵))) + (i · ((sin‘𝐴) · (cos‘𝐵)))) = (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))
2720, 26eqtrd 2222 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))
2827oveq2d 5913 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
2919, 28eqtrd 2222 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
30 mulcl 7969 . . . . . . . . 9 ((i ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
316, 11, 30sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
329, 31mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘𝐵))) ∈ ℂ)
33 mulcl 7969 . . . . . . . . 9 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
346, 14, 33sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
3516, 34mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) · (i · (sin‘𝐴))) ∈ ℂ)
3632, 35addcld 8008 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ)
37 mulcl 7969 . . . . . 6 ((2 ∈ ℂ ∧ (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) ∈ ℂ)
384, 36, 37sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) ∈ ℂ)
39 2mulicn 9172 . . . . . 6 (2 · i) ∈ ℂ
4039a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · i) ∈ ℂ)
41 2muliap0 9174 . . . . . 6 (2 · i) # 0
4241a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · i) # 0)
4338, 40, 18, 42divmulapd 8800 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))) ↔ ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
4429, 43mpbird 167 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
459, 16mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
4631, 34mulcld 8009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) ∈ ℂ)
4745, 46addcld 8008 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ)
4847, 36, 36pnncand 8338 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) − ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) = ((((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
49 adddi 7974 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
506, 49mp3an1 1335 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
5150fveq2d 5538 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = (exp‘((i · 𝐴) + (i · 𝐵))))
52 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
53 mulcl 7969 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
546, 52, 53sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
55 simpr 110 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
56 mulcl 7969 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
576, 55, 56sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
58 efadd 11718 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
5954, 57, 58syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
60 efival 11775 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
61 efival 11775 . . . . . . . . 9 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
6260, 61oveqan12d 5916 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))))
639, 34, 16, 31muladdd 8404 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
6462, 63eqtrd 2222 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
6551, 59, 643eqtrd 2226 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
66 negicn 8189 . . . . . . . . 9 -i ∈ ℂ
67 adddi 7974 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
6866, 67mp3an1 1335 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
6968fveq2d 5538 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = (exp‘((-i · 𝐴) + (-i · 𝐵))))
70 mulcl 7969 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
7166, 52, 70sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
72 mulcl 7969 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
7366, 55, 72sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
74 efadd 11718 . . . . . . . 8 (((-i · 𝐴) ∈ ℂ ∧ (-i · 𝐵) ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
7571, 73, 74syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
76 efmival 11776 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
77 efmival 11776 . . . . . . . . 9 (𝐵 ∈ ℂ → (exp‘(-i · 𝐵)) = ((cos‘𝐵) − (i · (sin‘𝐵))))
7876, 77oveqan12d 5916 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))))
799, 34, 16, 31mulsubd 8405 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8078, 79eqtrd 2222 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8169, 75, 803eqtrd 2226 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8265, 81oveq12d 5915 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) − ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
83362timesd 9192 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8448, 82, 833eqtr4d 2232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8584oveq1d 5912 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)) = ((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)))
8617, 12addcomd 8139 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
8744, 85, 863eqtr4d 2232 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
883, 87eqtrd 2222 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  0cc0 7842  ici 7844   + caddc 7845   · cmul 7847  cmin 8159  -cneg 8160   # cap 8569   / cdiv 8660  2c2 9001  expce 11685  sincsin 11687  cosccos 11688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-sin 11693  df-cos 11694
This theorem is referenced by:  tanaddap  11782  sinsub  11783  addsin  11785  subsin  11786  sin2t  11792  demoivreALT  11816  sinppi  14715  sinhalfpip  14718
  Copyright terms: Public domain W3C validator