ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmnfdc GIF version

Theorem xrmnfdc 9978
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrmnfdc (𝐴 ∈ ℝ*DECID 𝐴 = -∞)

Proof of Theorem xrmnfdc
StepHypRef Expression
1 elxr 9911 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renemnf 8134 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
32neneqd 2398 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
43olcd 736 . . . 4 (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
5 df-dc 837 . . . 4 (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
64, 5sylibr 134 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = -∞)
7 pnfnemnf 8140 . . . . . . 7 +∞ ≠ -∞
87neii 2379 . . . . . 6 ¬ +∞ = -∞
9 eqeq1 2213 . . . . . 6 (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞))
108, 9mtbiri 677 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 = -∞)
1110olcd 736 . . . 4 (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
1211, 5sylibr 134 . . 3 (𝐴 = +∞ → DECID 𝐴 = -∞)
13 orc 714 . . . 4 (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
1413, 5sylibr 134 . . 3 (𝐴 = -∞ → DECID 𝐴 = -∞)
156, 12, 143jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞)
161, 15sylbi 121 1 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  cr 7937  +∞cpnf 8117  -∞cmnf 8118  *cxr 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-pnf 8122  df-mnf 8123  df-xr 8124
This theorem is referenced by:  xaddf  9979  xaddval  9980  xaddmnf1  9983  xaddcom  9996  xnegdi  10003  xpncan  10006  xleadd1a  10008  xsubge0  10016  xrmaxiflemcl  11606  xrmaxifle  11607  xrmaxiflemab  11608  xrmaxiflemlub  11609  xrmaxiflemcom  11610  xrmaxadd  11622
  Copyright terms: Public domain W3C validator