| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmnfdc | GIF version | ||
| Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9911 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renemnf 8134 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 3 | 2 | neneqd 2398 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
| 4 | 3 | olcd 736 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
| 5 | df-dc 837 | . . . 4 ⊢ (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = -∞) |
| 7 | pnfnemnf 8140 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
| 8 | 7 | neii 2379 | . . . . . 6 ⊢ ¬ +∞ = -∞ |
| 9 | eqeq1 2213 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞)) | |
| 10 | 8, 9 | mtbiri 677 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
| 11 | 10 | olcd 736 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
| 12 | 11, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = -∞) |
| 13 | orc 714 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
| 14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = -∞) |
| 15 | 6, 12, 14 | 3jaoi 1316 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞) |
| 16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ℝcr 7937 +∞cpnf 8117 -∞cmnf 8118 ℝ*cxr 8119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-pnf 8122 df-mnf 8123 df-xr 8124 |
| This theorem is referenced by: xaddf 9979 xaddval 9980 xaddmnf1 9983 xaddcom 9996 xnegdi 10003 xpncan 10006 xleadd1a 10008 xsubge0 10016 xrmaxiflemcl 11606 xrmaxifle 11607 xrmaxiflemab 11608 xrmaxiflemlub 11609 xrmaxiflemcom 11610 xrmaxadd 11622 |
| Copyright terms: Public domain | W3C validator |