| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmnfdc | GIF version | ||
| Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renemnf 8092 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 3 | 2 | neneqd 2388 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
| 4 | 3 | olcd 735 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
| 5 | df-dc 836 | . . . 4 ⊢ (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = -∞) |
| 7 | pnfnemnf 8098 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
| 8 | 7 | neii 2369 | . . . . . 6 ⊢ ¬ +∞ = -∞ |
| 9 | eqeq1 2203 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞)) | |
| 10 | 8, 9 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
| 11 | 10 | olcd 735 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
| 12 | 11, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = -∞) |
| 13 | orc 713 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
| 14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = -∞) |
| 15 | 6, 12, 14 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞) |
| 16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-mnf 8081 df-xr 8082 |
| This theorem is referenced by: xaddf 9936 xaddval 9937 xaddmnf1 9940 xaddcom 9953 xnegdi 9960 xpncan 9963 xleadd1a 9965 xsubge0 9973 xrmaxiflemcl 11427 xrmaxifle 11428 xrmaxiflemab 11429 xrmaxiflemlub 11430 xrmaxiflemcom 11431 xrmaxadd 11443 |
| Copyright terms: Public domain | W3C validator |