ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmnfdc GIF version

Theorem xrmnfdc 9800
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrmnfdc (𝐴 ∈ ℝ*DECID 𝐴 = -∞)

Proof of Theorem xrmnfdc
StepHypRef Expression
1 elxr 9733 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renemnf 7968 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
32neneqd 2361 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
43olcd 729 . . . 4 (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
5 df-dc 830 . . . 4 (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
64, 5sylibr 133 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = -∞)
7 pnfnemnf 7974 . . . . . . 7 +∞ ≠ -∞
87neii 2342 . . . . . 6 ¬ +∞ = -∞
9 eqeq1 2177 . . . . . 6 (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞))
108, 9mtbiri 670 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 = -∞)
1110olcd 729 . . . 4 (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
1211, 5sylibr 133 . . 3 (𝐴 = +∞ → DECID 𝐴 = -∞)
13 orc 707 . . . 4 (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
1413, 5sylibr 133 . . 3 (𝐴 = -∞ → DECID 𝐴 = -∞)
156, 12, 143jaoi 1298 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞)
161, 15sylbi 120 1 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703  DECID wdc 829  w3o 972   = wceq 1348  wcel 2141  cr 7773  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  xaddf  9801  xaddval  9802  xaddmnf1  9805  xaddcom  9818  xnegdi  9825  xpncan  9828  xleadd1a  9830  xsubge0  9838  xrmaxiflemcl  11208  xrmaxifle  11209  xrmaxiflemab  11210  xrmaxiflemlub  11211  xrmaxiflemcom  11212  xrmaxadd  11224
  Copyright terms: Public domain W3C validator