![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrmnfdc | GIF version |
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrmnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9778 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 8008 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2368 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | 3 | olcd 734 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
5 | df-dc 835 | . . . 4 ⊢ (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = -∞) |
7 | pnfnemnf 8014 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
8 | 7 | neii 2349 | . . . . . 6 ⊢ ¬ +∞ = -∞ |
9 | eqeq1 2184 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞)) | |
10 | 8, 9 | mtbiri 675 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
11 | 10 | olcd 734 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
12 | 11, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = -∞) |
13 | orc 712 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = -∞) |
15 | 6, 12, 14 | 3jaoi 1303 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞) |
16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ℝcr 7812 +∞cpnf 7991 -∞cmnf 7992 ℝ*cxr 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-pnf 7996 df-mnf 7997 df-xr 7998 |
This theorem is referenced by: xaddf 9846 xaddval 9847 xaddmnf1 9850 xaddcom 9863 xnegdi 9870 xpncan 9873 xleadd1a 9875 xsubge0 9883 xrmaxiflemcl 11255 xrmaxifle 11256 xrmaxiflemab 11257 xrmaxiflemlub 11258 xrmaxiflemcom 11259 xrmaxadd 11271 |
Copyright terms: Public domain | W3C validator |