![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrmnfdc | GIF version |
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrmnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9842 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 8068 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2385 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | 3 | olcd 735 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
5 | df-dc 836 | . . . 4 ⊢ (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = -∞) |
7 | pnfnemnf 8074 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
8 | 7 | neii 2366 | . . . . . 6 ⊢ ¬ +∞ = -∞ |
9 | eqeq1 2200 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞)) | |
10 | 8, 9 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
11 | 10 | olcd 735 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
12 | 11, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = -∞) |
13 | orc 713 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = -∞) |
15 | 6, 12, 14 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞) |
16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ℝcr 7871 +∞cpnf 8051 -∞cmnf 8052 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-pnf 8056 df-mnf 8057 df-xr 8058 |
This theorem is referenced by: xaddf 9910 xaddval 9911 xaddmnf1 9914 xaddcom 9927 xnegdi 9934 xpncan 9937 xleadd1a 9939 xsubge0 9947 xrmaxiflemcl 11388 xrmaxifle 11389 xrmaxiflemab 11390 xrmaxiflemlub 11391 xrmaxiflemcom 11392 xrmaxadd 11404 |
Copyright terms: Public domain | W3C validator |