Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmnfdc | GIF version |
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrmnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9747 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 7980 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2366 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | 3 | olcd 734 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
5 | df-dc 835 | . . . 4 ⊢ (DECID 𝐴 = -∞ ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = -∞) |
7 | pnfnemnf 7986 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
8 | 7 | neii 2347 | . . . . . 6 ⊢ ¬ +∞ = -∞ |
9 | eqeq1 2182 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞)) | |
10 | 8, 9 | mtbiri 675 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
11 | 10 | olcd 734 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
12 | 11, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = -∞) |
13 | orc 712 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) | |
14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = -∞) |
15 | 6, 12, 14 | 3jaoi 1303 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = -∞) |
16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = -∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2146 ℝcr 7785 +∞cpnf 7963 -∞cmnf 7964 ℝ*cxr 7965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-mnf 7969 df-xr 7970 |
This theorem is referenced by: xaddf 9815 xaddval 9816 xaddmnf1 9819 xaddcom 9832 xnegdi 9839 xpncan 9842 xleadd1a 9844 xsubge0 9852 xrmaxiflemcl 11221 xrmaxifle 11222 xrmaxiflemab 11223 xrmaxiflemlub 11224 xrmaxiflemcom 11225 xrmaxadd 11237 |
Copyright terms: Public domain | W3C validator |