![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrpnfdc | GIF version |
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrpnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9845 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 8069 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2385 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | 3 | olcd 735 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
5 | df-dc 836 | . . . 4 ⊢ (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = +∞) |
7 | orc 713 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
8 | 7, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = +∞) |
9 | mnfnepnf 8077 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
10 | 9 | neii 2366 | . . . . . 6 ⊢ ¬ -∞ = +∞ |
11 | eqeq1 2200 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
12 | 10, 11 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
13 | 12 | olcd 735 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = +∞) |
15 | 6, 8, 14 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞) |
16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 df-xr 8060 |
This theorem is referenced by: xaddf 9913 xaddval 9914 xaddpnf1 9915 xaddcom 9930 xnegdi 9937 xleadd1a 9942 xlesubadd 9952 xrmaxiflemcl 11391 xrmaxifle 11392 xrmaxiflemab 11393 xrmaxiflemlub 11394 xrmaxiflemcom 11395 xrmaxadd 11407 xblss2ps 14583 xblss2 14584 |
Copyright terms: Public domain | W3C validator |