ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc GIF version

Theorem xrpnfdc 9911
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc (𝐴 ∈ ℝ*DECID 𝐴 = +∞)

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9845 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 8069 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2385 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
43olcd 735 . . . 4 (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5 df-dc 836 . . . 4 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
64, 5sylibr 134 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = +∞)
7 orc 713 . . . 4 (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
87, 5sylibr 134 . . 3 (𝐴 = +∞ → DECID 𝐴 = +∞)
9 mnfnepnf 8077 . . . . . . 7 -∞ ≠ +∞
109neii 2366 . . . . . 6 ¬ -∞ = +∞
11 eqeq1 2200 . . . . . 6 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1210, 11mtbiri 676 . . . . 5 (𝐴 = -∞ → ¬ 𝐴 = +∞)
1312olcd 735 . . . 4 (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
1413, 5sylibr 134 . . 3 (𝐴 = -∞ → DECID 𝐴 = +∞)
156, 8, 143jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞)
161, 15sylbi 121 1 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  cr 7873  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059  df-xr 8060
This theorem is referenced by:  xaddf  9913  xaddval  9914  xaddpnf1  9915  xaddcom  9930  xnegdi  9937  xleadd1a  9942  xlesubadd  9952  xrmaxiflemcl  11391  xrmaxifle  11392  xrmaxiflemab  11393  xrmaxiflemlub  11394  xrmaxiflemcom  11395  xrmaxadd  11407  xblss2ps  14583  xblss2  14584
  Copyright terms: Public domain W3C validator