![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrpnfdc | GIF version |
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrpnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9776 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 8005 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2368 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | 3 | olcd 734 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
5 | df-dc 835 | . . . 4 ⊢ (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = +∞) |
7 | orc 712 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
8 | 7, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = +∞) |
9 | mnfnepnf 8013 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
10 | 9 | neii 2349 | . . . . . 6 ⊢ ¬ -∞ = +∞ |
11 | eqeq1 2184 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
12 | 10, 11 | mtbiri 675 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
13 | 12 | olcd 734 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = +∞) |
15 | 6, 8, 14 | 3jaoi 1303 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞) |
16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ℝcr 7810 +∞cpnf 7989 -∞cmnf 7990 ℝ*cxr 7991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-un 4434 ax-cnex 7902 ax-resscn 7903 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-uni 3811 df-pnf 7994 df-mnf 7995 df-xr 7996 |
This theorem is referenced by: xaddf 9844 xaddval 9845 xaddpnf1 9846 xaddcom 9861 xnegdi 9868 xleadd1a 9873 xlesubadd 9883 xrmaxiflemcl 11253 xrmaxifle 11254 xrmaxiflemab 11255 xrmaxiflemlub 11256 xrmaxiflemcom 11257 xrmaxadd 11269 xblss2ps 13907 xblss2 13908 |
Copyright terms: Public domain | W3C validator |