ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc GIF version

Theorem xrpnfdc 9874
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc (𝐴 ∈ ℝ*DECID 𝐴 = +∞)

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9808 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 8036 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2381 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
43olcd 735 . . . 4 (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5 df-dc 836 . . . 4 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
64, 5sylibr 134 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = +∞)
7 orc 713 . . . 4 (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
87, 5sylibr 134 . . 3 (𝐴 = +∞ → DECID 𝐴 = +∞)
9 mnfnepnf 8044 . . . . . . 7 -∞ ≠ +∞
109neii 2362 . . . . . 6 ¬ -∞ = +∞
11 eqeq1 2196 . . . . . 6 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1210, 11mtbiri 676 . . . . 5 (𝐴 = -∞ → ¬ 𝐴 = +∞)
1312olcd 735 . . . 4 (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
1413, 5sylibr 134 . . 3 (𝐴 = -∞ → DECID 𝐴 = +∞)
156, 8, 143jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞)
161, 15sylbi 121 1 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2160  cr 7841  +∞cpnf 8020  -∞cmnf 8021  *cxr 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-un 4451  ax-cnex 7933  ax-resscn 7934
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-pnf 8025  df-mnf 8026  df-xr 8027
This theorem is referenced by:  xaddf  9876  xaddval  9877  xaddpnf1  9878  xaddcom  9893  xnegdi  9900  xleadd1a  9905  xlesubadd  9915  xrmaxiflemcl  11288  xrmaxifle  11289  xrmaxiflemab  11290  xrmaxiflemlub  11291  xrmaxiflemcom  11292  xrmaxadd  11304  xblss2ps  14381  xblss2  14382
  Copyright terms: Public domain W3C validator