ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc GIF version

Theorem xrpnfdc 9917
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc (𝐴 ∈ ℝ*DECID 𝐴 = +∞)

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9851 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 8074 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2388 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
43olcd 735 . . . 4 (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5 df-dc 836 . . . 4 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
64, 5sylibr 134 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = +∞)
7 orc 713 . . . 4 (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
87, 5sylibr 134 . . 3 (𝐴 = +∞ → DECID 𝐴 = +∞)
9 mnfnepnf 8082 . . . . . . 7 -∞ ≠ +∞
109neii 2369 . . . . . 6 ¬ -∞ = +∞
11 eqeq1 2203 . . . . . 6 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1210, 11mtbiri 676 . . . . 5 (𝐴 = -∞ → ¬ 𝐴 = +∞)
1312olcd 735 . . . 4 (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
1413, 5sylibr 134 . . 3 (𝐴 = -∞ → DECID 𝐴 = +∞)
156, 8, 143jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞)
161, 15sylbi 121 1 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167  cr 7878  +∞cpnf 8058  -∞cmnf 8059  *cxr 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-mnf 8064  df-xr 8065
This theorem is referenced by:  xaddf  9919  xaddval  9920  xaddpnf1  9921  xaddcom  9936  xnegdi  9943  xleadd1a  9948  xlesubadd  9958  xrmaxiflemcl  11410  xrmaxifle  11411  xrmaxiflemab  11412  xrmaxiflemlub  11413  xrmaxiflemcom  11414  xrmaxadd  11426  xblss2ps  14640  xblss2  14641
  Copyright terms: Public domain W3C validator