| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrpnfdc | GIF version | ||
| Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrpnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9905 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renepnf 8127 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 2 | neneqd 2398 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
| 4 | 3 | olcd 736 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
| 5 | df-dc 837 | . . . 4 ⊢ (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = +∞) |
| 7 | orc 714 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
| 8 | 7, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = +∞) |
| 9 | mnfnepnf 8135 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
| 10 | 9 | neii 2379 | . . . . . 6 ⊢ ¬ -∞ = +∞ |
| 11 | eqeq1 2213 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
| 12 | 10, 11 | mtbiri 677 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
| 13 | 12 | olcd 736 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
| 14 | 13, 5 | sylibr 134 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = +∞) |
| 15 | 6, 8, 14 | 3jaoi 1316 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞) |
| 16 | 1, 15 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ℝcr 7931 +∞cpnf 8111 -∞cmnf 8112 ℝ*cxr 8113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-un 4484 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 df-pnf 8116 df-mnf 8117 df-xr 8118 |
| This theorem is referenced by: xaddf 9973 xaddval 9974 xaddpnf1 9975 xaddcom 9990 xnegdi 9997 xleadd1a 10002 xlesubadd 10012 xrmaxiflemcl 11600 xrmaxifle 11601 xrmaxiflemab 11602 xrmaxiflemlub 11603 xrmaxiflemcom 11604 xrmaxadd 11616 xblss2ps 14920 xblss2 14921 |
| Copyright terms: Public domain | W3C validator |