Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrpnfdc | GIF version |
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrpnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9733 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 7967 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2361 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | 3 | olcd 729 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
5 | df-dc 830 | . . . 4 ⊢ (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
6 | 4, 5 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = +∞) |
7 | orc 707 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
8 | 7, 5 | sylibr 133 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = +∞) |
9 | mnfnepnf 7975 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
10 | 9 | neii 2342 | . . . . . 6 ⊢ ¬ -∞ = +∞ |
11 | eqeq1 2177 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
12 | 10, 11 | mtbiri 670 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
13 | 12 | olcd 729 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
14 | 13, 5 | sylibr 133 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = +∞) |
15 | 6, 8, 14 | 3jaoi 1298 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞) |
16 | 1, 15 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 DECID wdc 829 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ℝcr 7773 +∞cpnf 7951 -∞cmnf 7952 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: xaddf 9801 xaddval 9802 xaddpnf1 9803 xaddcom 9818 xnegdi 9825 xleadd1a 9830 xlesubadd 9840 xrmaxiflemcl 11208 xrmaxifle 11209 xrmaxiflemab 11210 xrmaxiflemlub 11211 xrmaxiflemcom 11212 xrmaxadd 11224 xblss2ps 13198 xblss2 13199 |
Copyright terms: Public domain | W3C validator |