ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc GIF version

Theorem xrpnfdc 9842
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc (𝐴 ∈ ℝ*DECID 𝐴 = +∞)

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9776 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 8005 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2368 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
43olcd 734 . . . 4 (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5 df-dc 835 . . . 4 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
64, 5sylibr 134 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = +∞)
7 orc 712 . . . 4 (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
87, 5sylibr 134 . . 3 (𝐴 = +∞ → DECID 𝐴 = +∞)
9 mnfnepnf 8013 . . . . . . 7 -∞ ≠ +∞
109neii 2349 . . . . . 6 ¬ -∞ = +∞
11 eqeq1 2184 . . . . . 6 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1210, 11mtbiri 675 . . . . 5 (𝐴 = -∞ → ¬ 𝐴 = +∞)
1312olcd 734 . . . 4 (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
1413, 5sylibr 134 . . 3 (𝐴 = -∞ → DECID 𝐴 = +∞)
156, 8, 143jaoi 1303 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞)
161, 15sylbi 121 1 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708  DECID wdc 834  w3o 977   = wceq 1353  wcel 2148  cr 7810  +∞cpnf 7989  -∞cmnf 7990  *cxr 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-un 4434  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-pnf 7994  df-mnf 7995  df-xr 7996
This theorem is referenced by:  xaddf  9844  xaddval  9845  xaddpnf1  9846  xaddcom  9861  xnegdi  9868  xleadd1a  9873  xlesubadd  9883  xrmaxiflemcl  11253  xrmaxifle  11254  xrmaxiflemab  11255  xrmaxiflemlub  11256  xrmaxiflemcom  11257  xrmaxadd  11269  xblss2ps  13907  xblss2  13908
  Copyright terms: Public domain W3C validator