Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrpnfdc | GIF version |
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
Ref | Expression |
---|---|
xrpnfdc | ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 7946 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2357 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | 3 | olcd 724 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
5 | df-dc 825 | . . . 4 ⊢ (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
6 | 4, 5 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ ℝ → DECID 𝐴 = +∞) |
7 | orc 702 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | |
8 | 7, 5 | sylibr 133 | . . 3 ⊢ (𝐴 = +∞ → DECID 𝐴 = +∞) |
9 | mnfnepnf 7954 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
10 | 9 | neii 2338 | . . . . . 6 ⊢ ¬ -∞ = +∞ |
11 | eqeq1 2172 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
12 | 10, 11 | mtbiri 665 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
13 | 12 | olcd 724 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
14 | 13, 5 | sylibr 133 | . . 3 ⊢ (𝐴 = -∞ → DECID 𝐴 = +∞) |
15 | 6, 8, 14 | 3jaoi 1293 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞) |
16 | 1, 15 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 DECID wdc 824 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: xaddf 9780 xaddval 9781 xaddpnf1 9782 xaddcom 9797 xnegdi 9804 xleadd1a 9809 xlesubadd 9819 xrmaxiflemcl 11186 xrmaxifle 11187 xrmaxiflemab 11188 xrmaxiflemlub 11189 xrmaxiflemcom 11190 xrmaxadd 11202 xblss2ps 13044 xblss2 13045 |
Copyright terms: Public domain | W3C validator |