ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc GIF version

Theorem xrpnfdc 9466
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc (𝐴 ∈ ℝ*DECID 𝐴 = +∞)

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9404 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 7685 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2288 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
43olcd 694 . . . 4 (𝐴 ∈ ℝ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5 df-dc 787 . . . 4 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
64, 5sylibr 133 . . 3 (𝐴 ∈ ℝ → DECID 𝐴 = +∞)
7 orc 674 . . . 4 (𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
87, 5sylibr 133 . . 3 (𝐴 = +∞ → DECID 𝐴 = +∞)
9 mnfnepnf 7693 . . . . . . 7 -∞ ≠ +∞
109neii 2269 . . . . . 6 ¬ -∞ = +∞
11 eqeq1 2106 . . . . . 6 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1210, 11mtbiri 641 . . . . 5 (𝐴 = -∞ → ¬ 𝐴 = +∞)
1312olcd 694 . . . 4 (𝐴 = -∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
1413, 5sylibr 133 . . 3 (𝐴 = -∞ → DECID 𝐴 = +∞)
156, 8, 143jaoi 1249 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → DECID 𝐴 = +∞)
161, 15sylbi 120 1 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 670  DECID wdc 786  w3o 929   = wceq 1299  wcel 1448  cr 7499  +∞cpnf 7669  -∞cmnf 7670  *cxr 7671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-un 4293  ax-cnex 7586  ax-resscn 7587
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-uni 3684  df-pnf 7674  df-mnf 7675  df-xr 7676
This theorem is referenced by:  xaddf  9468  xaddval  9469  xaddpnf1  9470  xaddcom  9485  xnegdi  9492  xleadd1a  9497  xlesubadd  9507  xrmaxiflemcl  10853  xrmaxifle  10854  xrmaxiflemab  10855  xrmaxiflemlub  10856  xrmaxiflemcom  10857  xrmaxadd  10869  xblss2ps  12332  xblss2  12333
  Copyright terms: Public domain W3C validator