ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg GIF version

Theorem xnegneg 9902
Description: Extended real version of negneg 8271. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9845 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 9899 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
3 xnegeq 9896 . . . . 5 (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴)
42, 3syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴)
5 renegcl 8282 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 rexneg 9899 . . . . 5 (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
75, 6syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
8 recn 8007 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98negnegd 8323 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
104, 7, 93eqtrd 2230 . . 3 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴)
11 xnegmnf 9898 . . . 4 -𝑒-∞ = +∞
12 xnegeq 9896 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
13 xnegpnf 9897 . . . . . 6 -𝑒+∞ = -∞
1412, 13eqtrdi 2242 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
15 xnegeq 9896 . . . . 5 (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
1614, 15syl 14 . . . 4 (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
17 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1811, 16, 173eqtr4a 2252 . . 3 (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴)
19 xnegeq 9896 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
2019, 11eqtrdi 2242 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
21 xnegeq 9896 . . . . 5 (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
2220, 21syl 14 . . . 4 (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
23 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2413, 22, 233eqtr4a 2252 . . 3 (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴)
2510, 18, 243jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴)
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979   = wceq 1364  wcel 2164  cr 7873  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055  -cneg 8193  -𝑒cxne 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-sub 8194  df-neg 8195  df-xneg 9841
This theorem is referenced by:  xneg11  9903  xltneg  9905  xnegdi  9937  xnpcan  9941  xrnegiso  11408  infxrnegsupex  11409  xrnegcon1d  11410  xrminmax  11411  xrmin1inf  11413  xrmin2inf  11414  xrltmininf  11416  xrlemininf  11417  xrminltinf  11418  xrminadd  11421
  Copyright terms: Public domain W3C validator