| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegneg | GIF version | ||
| Description: Extended real version of negneg 8392. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegneg | ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9968 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 10022 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | xnegeq 10019 | . . . . 5 ⊢ (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴) |
| 5 | renegcl 8403 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 6 | rexneg 10022 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) |
| 8 | recn 8128 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 9 | 8 | negnegd 8444 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
| 10 | 4, 7, 9 | 3eqtrd 2266 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴) |
| 11 | xnegmnf 10021 | . . . 4 ⊢ -𝑒-∞ = +∞ | |
| 12 | xnegeq 10019 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 13 | xnegpnf 10020 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
| 14 | 12, 13 | eqtrdi 2278 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
| 15 | xnegeq 10019 | . . . . 5 ⊢ (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞) | |
| 16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞) |
| 17 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 18 | 11, 16, 17 | 3eqtr4a 2288 | . . 3 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴) |
| 19 | xnegeq 10019 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 20 | 19, 11 | eqtrdi 2278 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
| 21 | xnegeq 10019 | . . . . 5 ⊢ (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞) | |
| 22 | 20, 21 | syl 14 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞) |
| 23 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 24 | 13, 22, 23 | 3eqtr4a 2288 | . . 3 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴) |
| 25 | 10, 18, 24 | 3jaoi 1337 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴) |
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ℝcr 7994 +∞cpnf 8174 -∞cmnf 8175 ℝ*cxr 8176 -cneg 8314 -𝑒cxne 9961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-sub 8315 df-neg 8316 df-xneg 9964 |
| This theorem is referenced by: xneg11 10026 xltneg 10028 xnegdi 10060 xnpcan 10064 xrnegiso 11768 infxrnegsupex 11769 xrnegcon1d 11770 xrminmax 11771 xrmin1inf 11773 xrmin2inf 11774 xrltmininf 11776 xrlemininf 11777 xrminltinf 11778 xrminadd 11781 |
| Copyright terms: Public domain | W3C validator |