ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg GIF version

Theorem xnegneg 9829
Description: Extended real version of negneg 8203. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9772 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 9826 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
3 xnegeq 9823 . . . . 5 (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴)
42, 3syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴)
5 renegcl 8214 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 rexneg 9826 . . . . 5 (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
75, 6syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
8 recn 7941 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98negnegd 8255 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
104, 7, 93eqtrd 2214 . . 3 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴)
11 xnegmnf 9825 . . . 4 -𝑒-∞ = +∞
12 xnegeq 9823 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
13 xnegpnf 9824 . . . . . 6 -𝑒+∞ = -∞
1412, 13eqtrdi 2226 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
15 xnegeq 9823 . . . . 5 (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
1614, 15syl 14 . . . 4 (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
17 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1811, 16, 173eqtr4a 2236 . . 3 (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴)
19 xnegeq 9823 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
2019, 11eqtrdi 2226 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
21 xnegeq 9823 . . . . 5 (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
2220, 21syl 14 . . . 4 (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
23 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2413, 22, 233eqtr4a 2236 . . 3 (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴)
2510, 18, 243jaoi 1303 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴)
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 977   = wceq 1353  wcel 2148  cr 7807  +∞cpnf 7985  -∞cmnf 7986  *cxr 7987  -cneg 8125  -𝑒cxne 9765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-sub 8126  df-neg 8127  df-xneg 9768
This theorem is referenced by:  xneg11  9830  xltneg  9832  xnegdi  9864  xnpcan  9868  xrnegiso  11263  infxrnegsupex  11264  xrnegcon1d  11265  xrminmax  11266  xrmin1inf  11268  xrmin2inf  11269  xrltmininf  11271  xrlemininf  11272  xrminltinf  11273  xrminadd  11276
  Copyright terms: Public domain W3C validator