ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg GIF version

Theorem xnegneg 9990
Description: Extended real version of negneg 8357. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9933 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 9987 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
3 xnegeq 9984 . . . . 5 (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴)
42, 3syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴)
5 renegcl 8368 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 rexneg 9987 . . . . 5 (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
75, 6syl 14 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
8 recn 8093 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98negnegd 8409 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
104, 7, 93eqtrd 2244 . . 3 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴)
11 xnegmnf 9986 . . . 4 -𝑒-∞ = +∞
12 xnegeq 9984 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
13 xnegpnf 9985 . . . . . 6 -𝑒+∞ = -∞
1412, 13eqtrdi 2256 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
15 xnegeq 9984 . . . . 5 (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
1614, 15syl 14 . . . 4 (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
17 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1811, 16, 173eqtr4a 2266 . . 3 (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴)
19 xnegeq 9984 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
2019, 11eqtrdi 2256 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
21 xnegeq 9984 . . . . 5 (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
2220, 21syl 14 . . . 4 (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
23 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2413, 22, 233eqtr4a 2266 . . 3 (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴)
2510, 18, 243jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴)
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980   = wceq 1373  wcel 2178  cr 7959  +∞cpnf 8139  -∞cmnf 8140  *cxr 8141  -cneg 8279  -𝑒cxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-sub 8280  df-neg 8281  df-xneg 9929
This theorem is referenced by:  xneg11  9991  xltneg  9993  xnegdi  10025  xnpcan  10029  xrnegiso  11688  infxrnegsupex  11689  xrnegcon1d  11690  xrminmax  11691  xrmin1inf  11693  xrmin2inf  11694  xrltmininf  11696  xrlemininf  11697  xrminltinf  11698  xrminadd  11701
  Copyright terms: Public domain W3C validator