| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegneg | GIF version | ||
| Description: Extended real version of negneg 8293. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegneg | ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 9922 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | xnegeq 9919 | . . . . 5 ⊢ (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴) |
| 5 | renegcl 8304 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 6 | rexneg 9922 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) |
| 8 | recn 8029 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 9 | 8 | negnegd 8345 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
| 10 | 4, 7, 9 | 3eqtrd 2233 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴) |
| 11 | xnegmnf 9921 | . . . 4 ⊢ -𝑒-∞ = +∞ | |
| 12 | xnegeq 9919 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 13 | xnegpnf 9920 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
| 14 | 12, 13 | eqtrdi 2245 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
| 15 | xnegeq 9919 | . . . . 5 ⊢ (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞) | |
| 16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞) |
| 17 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 18 | 11, 16, 17 | 3eqtr4a 2255 | . . 3 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴) |
| 19 | xnegeq 9919 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 20 | 19, 11 | eqtrdi 2245 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
| 21 | xnegeq 9919 | . . . . 5 ⊢ (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞) | |
| 22 | 20, 21 | syl 14 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞) |
| 23 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 24 | 13, 22, 23 | 3eqtr4a 2255 | . . 3 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴) |
| 25 | 10, 18, 24 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴) |
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 -cneg 8215 -𝑒cxne 9861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-sub 8216 df-neg 8217 df-xneg 9864 |
| This theorem is referenced by: xneg11 9926 xltneg 9928 xnegdi 9960 xnpcan 9964 xrnegiso 11444 infxrnegsupex 11445 xrnegcon1d 11446 xrminmax 11447 xrmin1inf 11449 xrmin2inf 11450 xrltmininf 11452 xrlemininf 11453 xrminltinf 11454 xrminadd 11457 |
| Copyright terms: Public domain | W3C validator |