ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegid GIF version

Theorem xnegid 10001
Description: Extended real version of negid 8339. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 9918 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 9972 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
32oveq2d 5973 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴))
4 renegcl 8353 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
5 rexadd 9994 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
64, 5mpdan 421 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
7 recn 8078 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87negidd 8393 . . . 4 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
93, 6, 83eqtrd 2243 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0)
10 id 19 . . . . 5 (𝐴 = +∞ → 𝐴 = +∞)
11 xnegeq 9969 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
12 xnegpnf 9970 . . . . . 6 -𝑒+∞ = -∞
1311, 12eqtrdi 2255 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
1410, 13oveq12d 5975 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
15 pnfaddmnf 9992 . . . 4 (+∞ +𝑒 -∞) = 0
1614, 15eqtrdi 2255 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
17 id 19 . . . . 5 (𝐴 = -∞ → 𝐴 = -∞)
18 xnegeq 9969 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
19 xnegmnf 9971 . . . . . 6 -𝑒-∞ = +∞
2018, 19eqtrdi 2255 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2117, 20oveq12d 5975 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
22 mnfaddpnf 9993 . . . 4 (-∞ +𝑒 +∞) = 0
2321, 22eqtrdi 2255 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
249, 16, 233jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0)
251, 24sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980   = wceq 1373  wcel 2177  (class class class)co 5957  cr 7944  0cc0 7945   + caddc 7948  +∞cpnf 8124  -∞cmnf 8125  *cxr 8126  -cneg 8264  -𝑒cxne 9911   +𝑒 cxad 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-sub 8265  df-neg 8266  df-xneg 9914  df-xadd 9915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator