ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegid GIF version

Theorem xnegid 9925
Description: Extended real version of negid 8266. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 9842 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 9896 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
32oveq2d 5934 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴))
4 renegcl 8280 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
5 rexadd 9918 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
64, 5mpdan 421 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
7 recn 8005 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87negidd 8320 . . . 4 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
93, 6, 83eqtrd 2230 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0)
10 id 19 . . . . 5 (𝐴 = +∞ → 𝐴 = +∞)
11 xnegeq 9893 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
12 xnegpnf 9894 . . . . . 6 -𝑒+∞ = -∞
1311, 12eqtrdi 2242 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
1410, 13oveq12d 5936 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
15 pnfaddmnf 9916 . . . 4 (+∞ +𝑒 -∞) = 0
1614, 15eqtrdi 2242 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
17 id 19 . . . . 5 (𝐴 = -∞ → 𝐴 = -∞)
18 xnegeq 9893 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
19 xnegmnf 9895 . . . . . 6 -𝑒-∞ = +∞
2018, 19eqtrdi 2242 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2117, 20oveq12d 5936 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
22 mnfaddpnf 9917 . . . 4 (-∞ +𝑒 +∞) = 0
2321, 22eqtrdi 2242 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
249, 16, 233jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0)
251, 24sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979   = wceq 1364  wcel 2164  (class class class)co 5918  cr 7871  0cc0 7872   + caddc 7875  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053  -cneg 8191  -𝑒cxne 9835   +𝑒 cxad 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-sub 8192  df-neg 8193  df-xneg 9838  df-xadd 9839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator