| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegid | GIF version | ||
| Description: Extended real version of negid 8273. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9851 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 9905 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | 2 | oveq2d 5938 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
| 4 | renegcl 8287 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 5 | rexadd 9927 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
| 6 | 4, 5 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
| 7 | recn 8012 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 8 | 7 | negidd 8327 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
| 9 | 3, 6, 8 | 3eqtrd 2233 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 10 | id 19 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 11 | xnegeq 9902 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 12 | xnegpnf 9903 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
| 13 | 11, 12 | eqtrdi 2245 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
| 14 | 10, 13 | oveq12d 5940 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
| 15 | pnfaddmnf 9925 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
| 16 | 14, 15 | eqtrdi 2245 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 17 | id 19 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 18 | xnegeq 9902 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 19 | xnegmnf 9904 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
| 20 | 18, 19 | eqtrdi 2245 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
| 21 | 17, 20 | oveq12d 5940 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
| 22 | mnfaddpnf 9926 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 23 | 21, 22 | eqtrdi 2245 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 24 | 9, 16, 23 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 25 | 1, 24 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℝcr 7878 0cc0 7879 + caddc 7882 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 -cneg 8198 -𝑒cxne 9844 +𝑒 cxad 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |