![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegid | GIF version |
Description: Extended real version of negid 7880. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9404 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 9454 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | 2 | oveq2d 5722 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
4 | renegcl 7894 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
5 | rexadd 9476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
6 | 4, 5 | mpdan 415 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
7 | recn 7625 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
8 | 7 | negidd 7934 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
9 | 3, 6, 8 | 3eqtrd 2136 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
10 | id 19 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
11 | xnegeq 9451 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
12 | xnegpnf 9452 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
13 | 11, 12 | syl6eq 2148 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
14 | 10, 13 | oveq12d 5724 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
15 | pnfaddmnf 9474 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
16 | 14, 15 | syl6eq 2148 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
17 | id 19 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
18 | xnegeq 9451 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
19 | xnegmnf 9453 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
20 | 18, 19 | syl6eq 2148 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | 17, 20 | oveq12d 5724 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
22 | mnfaddpnf 9475 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
23 | 21, 22 | syl6eq 2148 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
24 | 9, 16, 23 | 3jaoi 1249 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
25 | 1, 24 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 929 = wceq 1299 ∈ wcel 1448 (class class class)co 5706 ℝcr 7499 0cc0 7500 + caddc 7503 +∞cpnf 7669 -∞cmnf 7670 ℝ*cxr 7671 -cneg 7805 -𝑒cxne 9397 +𝑒 cxad 9398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-sub 7806 df-neg 7807 df-xneg 9400 df-xadd 9401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |