| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegid | GIF version | ||
| Description: Extended real version of negid 8318. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9897 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 9951 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | 2 | oveq2d 5959 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
| 4 | renegcl 8332 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 5 | rexadd 9973 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
| 6 | 4, 5 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
| 7 | recn 8057 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 8 | 7 | negidd 8372 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
| 9 | 3, 6, 8 | 3eqtrd 2241 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 10 | id 19 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 11 | xnegeq 9948 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 12 | xnegpnf 9949 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
| 13 | 11, 12 | eqtrdi 2253 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
| 14 | 10, 13 | oveq12d 5961 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
| 15 | pnfaddmnf 9971 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
| 16 | 14, 15 | eqtrdi 2253 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 17 | id 19 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 18 | xnegeq 9948 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 19 | xnegmnf 9950 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
| 20 | 18, 19 | eqtrdi 2253 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
| 21 | 17, 20 | oveq12d 5961 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
| 22 | mnfaddpnf 9972 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 23 | 21, 22 | eqtrdi 2253 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 24 | 9, 16, 23 | 3jaoi 1315 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 25 | 1, 24 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 0cc0 7924 + caddc 7927 +∞cpnf 8103 -∞cmnf 8104 ℝ*cxr 8105 -cneg 8243 -𝑒cxne 9890 +𝑒 cxad 9891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-sub 8244 df-neg 8245 df-xneg 9893 df-xadd 9894 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |