Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegid | GIF version |
Description: Extended real version of negid 8145. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 9766 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | 2 | oveq2d 5858 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
4 | renegcl 8159 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
5 | rexadd 9788 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
6 | 4, 5 | mpdan 418 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
7 | recn 7886 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
8 | 7 | negidd 8199 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
9 | 3, 6, 8 | 3eqtrd 2202 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
10 | id 19 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
11 | xnegeq 9763 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
12 | xnegpnf 9764 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
13 | 11, 12 | eqtrdi 2215 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
14 | 10, 13 | oveq12d 5860 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
15 | pnfaddmnf 9786 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
16 | 14, 15 | eqtrdi 2215 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
17 | id 19 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
18 | xnegeq 9763 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
19 | xnegmnf 9765 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
20 | 18, 19 | eqtrdi 2215 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | 17, 20 | oveq12d 5860 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
22 | mnfaddpnf 9787 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
23 | 21, 22 | eqtrdi 2215 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
24 | 9, 16, 23 | 3jaoi 1293 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
25 | 1, 24 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 0cc0 7753 + caddc 7756 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 -cneg 8070 -𝑒cxne 9705 +𝑒 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-sub 8071 df-neg 8072 df-xneg 9708 df-xadd 9709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |