ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 GIF version

Theorem xaddid1 10004
Description: Extended real version of addrid 8230. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9918 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 8092 . . . . 5 0 ∈ ℝ
3 rexadd 9994 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 425 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 8078 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addridd 8241 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2239 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 8139 . . . . 5 0 ∈ ℝ*
9 renemnf 8141 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 5 . . . . 5 0 ≠ -∞
11 xaddpnf2 9989 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 426 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 5964 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2265 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 8140 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 5 . . . . 5 0 ≠ +∞
18 xaddmnf2 9991 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 426 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 5964 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2265 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980   = wceq 1373  wcel 2177  wne 2377  (class class class)co 5957  cr 7944  0cc0 7945   + caddc 7948  +∞cpnf 8124  -∞cmnf 8125  *cxr 8126   +𝑒 cxad 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042  ax-0id 8053  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-xadd 9915
This theorem is referenced by:  xaddid2  10005  xaddid1d  10006  xnn0xadd0  10009  xpncan  10013  psmetsym  14876  psmetge0  14878  xmetge0  14912  xmetsym  14915
  Copyright terms: Public domain W3C validator