| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddid1 | GIF version | ||
| Description: Extended real version of addrid 8230. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9918 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | 0re 8092 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | rexadd 9994 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
| 4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
| 5 | recn 8078 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 5 | addridd 8241 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
| 7 | 4, 6 | eqtrd 2239 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
| 8 | 0xr 8139 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 9 | renemnf 8141 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
| 11 | xaddpnf2 9989 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
| 12 | 8, 10, 11 | mp2an 426 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
| 13 | oveq1 5964 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
| 14 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 15 | 12, 13, 14 | 3eqtr4a 2265 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
| 16 | renepnf 8140 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
| 17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
| 18 | xaddmnf2 9991 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
| 19 | 8, 17, 18 | mp2an 426 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
| 20 | oveq1 5964 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
| 21 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 22 | 19, 20, 21 | 3eqtr4a 2265 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
| 23 | 7, 15, 22 | 3jaoi 1316 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
| 24 | 1, 23 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 (class class class)co 5957 ℝcr 7944 0cc0 7945 + caddc 7948 +∞cpnf 8124 -∞cmnf 8125 ℝ*cxr 8126 +𝑒 cxad 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0id 8053 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-xadd 9915 |
| This theorem is referenced by: xaddid2 10005 xaddid1d 10006 xnn0xadd0 10009 xpncan 10013 psmetsym 14876 psmetge0 14878 xmetge0 14912 xmetsym 14915 |
| Copyright terms: Public domain | W3C validator |