![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddid1 | GIF version |
Description: Extended real version of addid1 8095. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9776 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 0re 7957 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | rexadd 9852 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
5 | recn 7944 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 5 | addid1d 8106 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
7 | 4, 6 | eqtrd 2210 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
8 | 0xr 8004 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | renemnf 8006 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
11 | xaddpnf2 9847 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
12 | 8, 10, 11 | mp2an 426 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
13 | oveq1 5882 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
14 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
15 | 12, 13, 14 | 3eqtr4a 2236 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
16 | renepnf 8005 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
18 | xaddmnf2 9849 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
19 | 8, 17, 18 | mp2an 426 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
20 | oveq1 5882 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
21 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
22 | 19, 20, 21 | 3eqtr4a 2236 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
23 | 7, 15, 22 | 3jaoi 1303 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
24 | 1, 23 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 (class class class)co 5875 ℝcr 7810 0cc0 7811 + caddc 7814 +∞cpnf 7989 -∞cmnf 7990 ℝ*cxr 7991 +𝑒 cxad 9770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 ax-0id 7919 ax-rnegex 7920 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-xadd 9773 |
This theorem is referenced by: xaddid2 9863 xaddid1d 9864 xnn0xadd0 9867 xpncan 9871 psmetsym 13832 psmetge0 13834 xmetge0 13868 xmetsym 13871 |
Copyright terms: Public domain | W3C validator |