| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddid1 | GIF version | ||
| Description: Extended real version of addrid 8209. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9897 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | 0re 8071 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | rexadd 9973 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
| 4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
| 5 | recn 8057 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 5 | addridd 8220 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
| 7 | 4, 6 | eqtrd 2237 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
| 8 | 0xr 8118 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 9 | renemnf 8120 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
| 11 | xaddpnf2 9968 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
| 12 | 8, 10, 11 | mp2an 426 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
| 13 | oveq1 5950 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
| 14 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 15 | 12, 13, 14 | 3eqtr4a 2263 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
| 16 | renepnf 8119 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
| 17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
| 18 | xaddmnf2 9970 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
| 19 | 8, 17, 18 | mp2an 426 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
| 20 | oveq1 5950 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
| 21 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 22 | 19, 20, 21 | 3eqtr4a 2263 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
| 23 | 7, 15, 22 | 3jaoi 1315 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
| 24 | 1, 23 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 (class class class)co 5943 ℝcr 7923 0cc0 7924 + caddc 7927 +∞cpnf 8103 -∞cmnf 8104 ℝ*cxr 8105 +𝑒 cxad 9891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0id 8032 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-xadd 9894 |
| This theorem is referenced by: xaddid2 9984 xaddid1d 9985 xnn0xadd0 9988 xpncan 9992 psmetsym 14743 psmetge0 14745 xmetge0 14779 xmetsym 14782 |
| Copyright terms: Public domain | W3C validator |