ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 GIF version

Theorem xaddid1 9486
Description: Extended real version of addid1 7771. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9404 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 7638 . . . . 5 0 ∈ ℝ
3 rexadd 9476 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 419 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 7625 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addid1d 7782 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2132 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 7684 . . . . 5 0 ∈ ℝ*
9 renemnf 7686 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 7 . . . . 5 0 ≠ -∞
11 xaddpnf2 9471 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 420 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 5713 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2158 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 7685 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 7 . . . . 5 0 ≠ +∞
18 xaddmnf2 9473 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 420 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 5713 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2158 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1249 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 929   = wceq 1299  wcel 1448  wne 2267  (class class class)co 5706  cr 7499  0cc0 7500   + caddc 7503  +∞cpnf 7669  -∞cmnf 7670  *cxr 7671   +𝑒 cxad 9398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592  ax-0id 7603  ax-rnegex 7604
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-xadd 9401
This theorem is referenced by:  xaddid2  9487  xaddid1d  9488  xnn0xadd0  9491  xpncan  9495  psmetsym  12257  psmetge0  12259  xmetge0  12293  xmetsym  12296
  Copyright terms: Public domain W3C validator