![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddid1 | GIF version |
Description: Extended real version of addrid 8159. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9845 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 0re 8021 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | rexadd 9921 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
5 | recn 8007 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 5 | addridd 8170 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
7 | 4, 6 | eqtrd 2226 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
8 | 0xr 8068 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | renemnf 8070 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
11 | xaddpnf2 9916 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
12 | 8, 10, 11 | mp2an 426 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
13 | oveq1 5926 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
14 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
15 | 12, 13, 14 | 3eqtr4a 2252 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
16 | renepnf 8069 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
18 | xaddmnf2 9918 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
19 | 8, 17, 18 | mp2an 426 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
20 | oveq1 5926 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
21 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
22 | 19, 20, 21 | 3eqtr4a 2252 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
23 | 7, 15, 22 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
24 | 1, 23 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 (class class class)co 5919 ℝcr 7873 0cc0 7874 + caddc 7877 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 +𝑒 cxad 9839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0id 7982 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-xadd 9842 |
This theorem is referenced by: xaddid2 9932 xaddid1d 9933 xnn0xadd0 9936 xpncan 9940 psmetsym 14508 psmetge0 14510 xmetge0 14544 xmetsym 14547 |
Copyright terms: Public domain | W3C validator |