![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddid1 | GIF version |
Description: Extended real version of addrid 8126. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9808 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 0re 7988 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | rexadd 9884 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
5 | recn 7975 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 5 | addridd 8137 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
7 | 4, 6 | eqtrd 2222 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
8 | 0xr 8035 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | renemnf 8037 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
11 | xaddpnf2 9879 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
12 | 8, 10, 11 | mp2an 426 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
13 | oveq1 5904 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
14 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
15 | 12, 13, 14 | 3eqtr4a 2248 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
16 | renepnf 8036 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
18 | xaddmnf2 9881 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
19 | 8, 17, 18 | mp2an 426 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
20 | oveq1 5904 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
21 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
22 | 19, 20, 21 | 3eqtr4a 2248 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
23 | 7, 15, 22 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
24 | 1, 23 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 (class class class)co 5897 ℝcr 7841 0cc0 7842 + caddc 7845 +∞cpnf 8020 -∞cmnf 8021 ℝ*cxr 8022 +𝑒 cxad 9802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 ax-0id 7950 ax-rnegex 7951 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-xadd 9805 |
This theorem is referenced by: xaddid2 9895 xaddid1d 9896 xnn0xadd0 9899 xpncan 9903 psmetsym 14306 psmetge0 14308 xmetge0 14342 xmetsym 14345 |
Copyright terms: Public domain | W3C validator |