![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znegcl | GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 8850 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 7772 | . . . . . 6 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 7825 | . . . . . 6 ⊢ -0 = 0 | |
4 | 2, 3 | syl6eq 2143 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 8859 | . . . . 5 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | syl6eqel 2185 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 8851 | . . . 4 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 8867 | . . . 4 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1246 | . . 3 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 9 | adantl 272 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
11 | 1, 10 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ w3o 926 = wceq 1296 ∈ wcel 1445 ℝcr 7446 0cc0 7447 -cneg 7751 ℕcn 8520 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-z 8849 |
This theorem is referenced by: znegclb 8881 nn0negz 8882 peano2zm 8886 zsubcl 8889 zeo 8950 zindd 8963 znegcld 8969 uzneg 9136 qnegcl 9220 fzsubel 9623 fzosubel 9754 ceilid 9871 modqcyc2 9916 expsubap 10134 climshft 10863 negdvdsb 11254 dvdsnegb 11255 summodnegmod 11269 dvdssub 11283 odd2np1 11315 gcdneg 11415 neggcd 11416 gcdabs 11421 bezoutlemaz 11434 bezoutlembz 11435 lcmneg 11498 neglcm 11499 lcmabs 11500 ex-fl 12364 |
Copyright terms: Public domain | W3C validator |