![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znegcl | GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9319 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 8212 | . . . . . 6 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 8265 | . . . . . 6 ⊢ -0 = 0 | |
4 | 2, 3 | eqtrdi 2242 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 9328 | . . . . 5 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | eqeltrdi 2284 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 9320 | . . . 4 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 9336 | . . . 4 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1314 | . . 3 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 9 | adantl 277 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
11 | 1, 10 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ℝcr 7871 0cc0 7872 -cneg 8191 ℕcn 8982 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 |
This theorem is referenced by: znegclb 9350 nn0negz 9351 peano2zm 9355 zsubcl 9358 zeo 9422 zindd 9435 znegcld 9441 uzneg 9611 qnegcl 9701 fzsubel 10126 fzosubel 10261 ceilid 10386 modqcyc2 10431 expsubap 10658 climshft 11447 negdvdsb 11950 dvdsnegb 11951 summodnegmod 11965 dvdssub 11981 odd2np1 12014 gcdneg 12119 neggcd 12120 gcdabs 12125 bezoutlemaz 12140 bezoutlembz 12141 lcmneg 12212 neglcm 12213 lcmabs 12214 4sqexercise1 12536 4sqexercise2 12537 mulgval 13192 mulgaddcomlem 13215 mulgneg2 13226 mulgsubdir 13232 zsubrg 14069 zringmulg 14086 zringinvg 14092 sinperlem 14943 lgsneg 15140 lgsdir2lem4 15147 lgsdir2lem5 15148 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |