| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znegcl | GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9409 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 8300 | . . . . . 6 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 8353 | . . . . . 6 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2256 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 9418 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2298 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 9410 | . . . 4 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 9426 | . . . 4 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1316 | . . 3 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
| 11 | 1, 10 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 ℝcr 7959 0cc0 7960 -cneg 8279 ℕcn 9071 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 |
| This theorem is referenced by: znegclb 9440 nn0negz 9441 peano2zm 9445 zsubcl 9448 zeo 9513 zindd 9526 znegcld 9532 uzneg 9702 qnegcl 9792 fzsubel 10217 fzosubel 10360 ceilid 10497 modqcyc2 10542 expsubap 10769 climshft 11730 negdvdsb 12233 dvdsnegb 12234 summodnegmod 12248 dvdssub 12264 odd2np1 12299 bitscmp 12384 gcdneg 12418 neggcd 12419 gcdabs 12424 bezoutlemaz 12439 bezoutlembz 12440 lcmneg 12511 neglcm 12512 lcmabs 12513 4sqexercise1 12836 4sqexercise2 12837 mulgval 13573 mulgaddcomlem 13596 mulgneg2 13607 mulgsubdir 13613 zsubrg 14458 zringmulg 14475 zringinvg 14481 sinperlem 15395 lgsneg 15616 lgsdir2lem4 15623 lgsdir2lem5 15624 ex-fl 15861 |
| Copyright terms: Public domain | W3C validator |