| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znegcl | GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9373 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 8264 | . . . . . 6 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 8317 | . . . . . 6 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2253 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 9382 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2295 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 9374 | . . . 4 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 9390 | . . . 4 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1315 | . . 3 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
| 11 | 1, 10 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 ℝcr 7923 0cc0 7924 -cneg 8243 ℕcn 9035 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 |
| This theorem is referenced by: znegclb 9404 nn0negz 9405 peano2zm 9409 zsubcl 9412 zeo 9477 zindd 9490 znegcld 9496 uzneg 9666 qnegcl 9756 fzsubel 10181 fzosubel 10321 ceilid 10458 modqcyc2 10503 expsubap 10730 climshft 11586 negdvdsb 12089 dvdsnegb 12090 summodnegmod 12104 dvdssub 12120 odd2np1 12155 bitscmp 12240 gcdneg 12274 neggcd 12275 gcdabs 12280 bezoutlemaz 12295 bezoutlembz 12296 lcmneg 12367 neglcm 12368 lcmabs 12369 4sqexercise1 12692 4sqexercise2 12693 mulgval 13429 mulgaddcomlem 13452 mulgneg2 13463 mulgsubdir 13469 zsubrg 14314 zringmulg 14331 zringinvg 14337 sinperlem 15251 lgsneg 15472 lgsdir2lem4 15479 lgsdir2lem5 15480 ex-fl 15623 |
| Copyright terms: Public domain | W3C validator |