| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlem1 | GIF version | ||
| Description: Lemma for acexmid 5933. List the cases identified in acexmidlemcase 5929 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
| acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
| Ref | Expression |
|---|---|
| acexmidlem1 | ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a | . . 3 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
| 2 | acexmidlem.b | . . 3 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
| 3 | acexmidlem.c | . . 3 ⊢ 𝐶 = {𝐴, 𝐵} | |
| 4 | 1, 2, 3 | acexmidlemcase 5929 | . 2 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}))) |
| 5 | 1, 2, 3 | acexmidlema 5925 | . . . 4 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
| 6 | 5 | orcd 734 | . . 3 ⊢ ({∅} ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) |
| 7 | 1, 2, 3 | acexmidlemb 5926 | . . . 4 ⊢ (∅ ∈ 𝐵 → 𝜑) |
| 8 | 7 | orcd 734 | . . 3 ⊢ (∅ ∈ 𝐵 → (𝜑 ∨ ¬ 𝜑)) |
| 9 | 1, 2, 3 | acexmidlemab 5928 | . . . 4 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ¬ 𝜑) |
| 10 | 9 | olcd 735 | . . 3 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → (𝜑 ∨ ¬ 𝜑)) |
| 11 | 6, 8, 10 | 3jaoi 1315 | . 2 ⊢ (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → (𝜑 ∨ ¬ 𝜑)) |
| 12 | 4, 11 | syl 14 | 1 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∃!wreu 2485 {crab 2487 ∅c0 3459 {csn 3632 {cpr 3633 ℩crio 5888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4411 df-on 4413 df-suc 4416 df-iota 5229 df-riota 5889 |
| This theorem is referenced by: acexmidlem2 5931 |
| Copyright terms: Public domain | W3C validator |