ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem1 GIF version

Theorem acexmidlem1 5817
Description: Lemma for acexmid 5820. List the cases identified in acexmidlemcase 5816 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlem1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlem1
StepHypRef Expression
1 acexmidlem.a . . 3 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 acexmidlem.b . . 3 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
3 acexmidlem.c . . 3 𝐶 = {𝐴, 𝐵}
41, 2, 3acexmidlemcase 5816 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
51, 2, 3acexmidlema 5812 . . . 4 ({∅} ∈ 𝐴𝜑)
65orcd 723 . . 3 ({∅} ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))
71, 2, 3acexmidlemb 5813 . . . 4 (∅ ∈ 𝐵𝜑)
87orcd 723 . . 3 (∅ ∈ 𝐵 → (𝜑 ∨ ¬ 𝜑))
91, 2, 3acexmidlemab 5815 . . . 4 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ¬ 𝜑)
109olcd 724 . . 3 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (𝜑 ∨ ¬ 𝜑))
116, 8, 103jaoi 1285 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (𝜑 ∨ ¬ 𝜑))
124, 11syl 14 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3o 962   = wceq 1335  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  {crab 2439  c0 3394  {csn 3560  {cpr 3561  crio 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331  df-iota 5134  df-riota 5777
This theorem is referenced by:  acexmidlem2  5818
  Copyright terms: Public domain W3C validator