![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > acexmidlem1 | GIF version |
Description: Lemma for acexmid 5917. List the cases identified in acexmidlemcase 5913 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlem1 | ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . 3 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
2 | acexmidlem.b | . . 3 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
3 | acexmidlem.c | . . 3 ⊢ 𝐶 = {𝐴, 𝐵} | |
4 | 1, 2, 3 | acexmidlemcase 5913 | . 2 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}))) |
5 | 1, 2, 3 | acexmidlema 5909 | . . . 4 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
6 | 5 | orcd 734 | . . 3 ⊢ ({∅} ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) |
7 | 1, 2, 3 | acexmidlemb 5910 | . . . 4 ⊢ (∅ ∈ 𝐵 → 𝜑) |
8 | 7 | orcd 734 | . . 3 ⊢ (∅ ∈ 𝐵 → (𝜑 ∨ ¬ 𝜑)) |
9 | 1, 2, 3 | acexmidlemab 5912 | . . . 4 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ¬ 𝜑) |
10 | 9 | olcd 735 | . . 3 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → (𝜑 ∨ ¬ 𝜑)) |
11 | 6, 8, 10 | 3jaoi 1314 | . 2 ⊢ (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → (𝜑 ∨ ¬ 𝜑)) |
12 | 4, 11 | syl 14 | 1 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∃!wreu 2474 {crab 2476 ∅c0 3446 {csn 3618 {cpr 3619 ℩crio 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-iota 5215 df-riota 5873 |
This theorem is referenced by: acexmidlem2 5915 |
Copyright terms: Public domain | W3C validator |