ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnblcld GIF version

Theorem cnblcld 14520
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnblcld (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅

Proof of Theorem cnblcld
StepHypRef Expression
1 absf 11160 . . . . 5 abs:ℂ⟶ℝ
2 ffn 5387 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
3 elpreima 5659 . . . . 5 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))))
41, 2, 3mp2b 8 . . . 4 (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))
5 df-3an 982 . . . . . . 7 (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))
6 abscl 11101 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
76rexrd 8042 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*)
8 absge0 11110 . . . . . . . . . 10 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
97, 8jca 306 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
109adantl 277 . . . . . . . 8 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
1110biantrurd 305 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)))
125, 11bitr4id 199 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅))
13 0xr 8039 . . . . . . 7 0 ∈ ℝ*
14 simpl 109 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
15 elicc1 9960 . . . . . . 7 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
1613, 14, 15sylancr 414 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
17 0cn 7984 . . . . . . . . . 10 0 ∈ ℂ
18 cnblcld.1 . . . . . . . . . . . 12 𝐷 = (abs ∘ − )
1918cnmetdval 14514 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
20 abssub 11151 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
2119, 20eqtrd 2222 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
2217, 21mpan 424 . . . . . . . . 9 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
23 subid1 8212 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
2423fveq2d 5541 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2522, 24eqtrd 2222 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2625adantl 277 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2726breq1d 4031 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
2812, 16, 273bitr4d 220 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅))
2928pm5.32da 452 . . . 4 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
304, 29bitrid 192 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
3130abbi2dv 2308 . 2 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)})
32 df-rab 2477 . 2 {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}
3331, 32eqtr4di 2240 1 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  {cab 2175  {crab 2472   class class class wbr 4021  ccnv 4646  cima 4650  ccom 4651   Fn wfn 5233  wf 5234  cfv 5238  (class class class)co 5900  cc 7844  cr 7845  0cc0 7846  *cxr 8026  cle 8028  cmin 8163  [,]cicc 9927  abscabs 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-rp 9690  df-icc 9931  df-seqfrec 10485  df-exp 10560  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator