Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnblcld GIF version

Theorem cnblcld 12730
 Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnblcld (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅

Proof of Theorem cnblcld
StepHypRef Expression
1 absf 10906 . . . . 5 abs:ℂ⟶ℝ
2 ffn 5275 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
3 elpreima 5542 . . . . 5 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))))
41, 2, 3mp2b 8 . . . 4 (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))
5 abscl 10847 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
65rexrd 7834 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*)
7 absge0 10856 . . . . . . . . . 10 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
86, 7jca 304 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
98adantl 275 . . . . . . . 8 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
109biantrurd 303 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)))
11 df-3an 964 . . . . . . 7 (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))
1210, 11syl6rbbr 198 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅))
13 0xr 7831 . . . . . . 7 0 ∈ ℝ*
14 simpl 108 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
15 elicc1 9730 . . . . . . 7 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
1613, 14, 15sylancr 410 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
17 0cn 7777 . . . . . . . . . 10 0 ∈ ℂ
18 cnblcld.1 . . . . . . . . . . . 12 𝐷 = (abs ∘ − )
1918cnmetdval 12724 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
20 abssub 10897 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
2119, 20eqtrd 2172 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
2217, 21mpan 420 . . . . . . . . 9 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
23 subid1 8001 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
2423fveq2d 5428 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2522, 24eqtrd 2172 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2625adantl 275 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2726breq1d 3942 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
2812, 16, 273bitr4d 219 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅))
2928pm5.32da 447 . . . 4 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
304, 29syl5bb 191 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
3130abbi2dv 2258 . 2 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)})
32 df-rab 2425 . 2 {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}
3331, 32eqtr4di 2190 1 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  {cab 2125  {crab 2420   class class class wbr 3932  ◡ccnv 4541   “ cima 4545   ∘ ccom 4546   Fn wfn 5121  ⟶wf 5122  ‘cfv 5126  (class class class)co 5777  ℂcc 7637  ℝcr 7638  0cc0 7639  ℝ*cxr 7818   ≤ cle 7820   − cmin 7952  [,]cicc 9697  abscabs 10793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758  ax-caucvg 7759 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-tr 4030  df-id 4218  df-po 4221  df-iso 4222  df-iord 4291  df-on 4293  df-ilim 4294  df-suc 4296  df-iom 4508  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-recs 6205  df-frec 6291  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-n0 8997  df-z 9074  df-uz 9346  df-rp 9464  df-icc 9701  df-seqfrec 10243  df-exp 10317  df-cj 10638  df-re 10639  df-im 10640  df-rsqrt 10794  df-abs 10795 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator