| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnblcld | GIF version | ||
| Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnblcld.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnblcld | ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf 11454 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
| 2 | ffn 5427 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 3 | elpreima 5701 | . . . . 5 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))) | |
| 4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))) |
| 5 | df-3an 983 | . . . . . . 7 ⊢ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)) | |
| 6 | abscl 11395 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 7 | 6 | rexrd 8124 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*) |
| 8 | absge0 11404 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥)) | |
| 9 | 7, 8 | jca 306 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥))) |
| 10 | 9 | adantl 277 | . . . . . . . 8 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥))) |
| 11 | 10 | biantrurd 305 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))) |
| 12 | 5, 11 | bitr4id 199 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅)) |
| 13 | 0xr 8121 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 14 | simpl 109 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*) | |
| 15 | elicc1 10048 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅))) | |
| 16 | 13, 14, 15 | sylancr 414 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅))) |
| 17 | 0cn 8066 | . . . . . . . . . 10 ⊢ 0 ∈ ℂ | |
| 18 | cnblcld.1 | . . . . . . . . . . . 12 ⊢ 𝐷 = (abs ∘ − ) | |
| 19 | 18 | cnmetdval 15034 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥))) |
| 20 | abssub 11445 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0))) | |
| 21 | 19, 20 | eqtrd 2238 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
| 22 | 17, 21 | mpan 424 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
| 23 | subid1 8294 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
| 24 | 23 | fveq2d 5582 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
| 25 | 22, 24 | eqtrd 2238 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥)) |
| 26 | 25 | adantl 277 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥)) |
| 27 | 26 | breq1d 4055 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅)) |
| 28 | 12, 16, 27 | 3bitr4d 220 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅)) |
| 29 | 28 | pm5.32da 452 | . . . 4 ⊢ (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅))) |
| 30 | 4, 29 | bitrid 192 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅))) |
| 31 | 30 | abbi2dv 2324 | . 2 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}) |
| 32 | df-rab 2493 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)} | |
| 33 | 31, 32 | eqtr4di 2256 | 1 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 {cab 2191 {crab 2488 class class class wbr 4045 ◡ccnv 4675 “ cima 4679 ∘ ccom 4680 Fn wfn 5267 ⟶wf 5268 ‘cfv 5272 (class class class)co 5946 ℂcc 7925 ℝcr 7926 0cc0 7927 ℝ*cxr 8108 ≤ cle 8110 − cmin 8245 [,]cicc 10015 abscabs 11341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-rp 9778 df-icc 10019 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |