Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fncnvima2 | GIF version |
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fncnvima2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 5615 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵))) | |
2 | 1 | abbi2dv 2289 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)}) |
3 | df-rab 2457 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)} | |
4 | 2, 3 | eqtr4di 2221 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 {crab 2452 ◡ccnv 4610 “ cima 4614 Fn wfn 5193 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: fniniseg2 5618 fnniniseg2 5619 |
Copyright terms: Public domain | W3C validator |