| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fncnvima2 | GIF version | ||
| Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncnvima2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 5753 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵))) | |
| 2 | 1 | abbi2dv 2348 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)}) |
| 3 | df-rab 2517 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)} | |
| 4 | 2, 3 | eqtr4di 2280 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 {crab 2512 ◡ccnv 4717 “ cima 4721 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: fniniseg2 5756 fnniniseg2 5757 |
| Copyright terms: Public domain | W3C validator |