ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval3 GIF version

Theorem tgval3 14378
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12964 and tgval2 14371. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgval3 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦𝐵𝑥 = 𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑉,𝑦

Proof of Theorem tgval3
StepHypRef Expression
1 eltg3 14377 . 2 (𝐵𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
21abbi2dv 2315 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦𝐵𝑥 = 𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wss 3157   cuni 3840  cfv 5259  topGenctg 12956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topgen 12962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator