![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgval3 | GIF version |
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12710 and tgval2 13521. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
tgval3 | β’ (π΅ β π β (topGenβπ΅) = {π₯ β£ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg3 13527 | . 2 β’ (π΅ β π β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) | |
2 | 1 | abbi2dv 2296 | 1 β’ (π΅ β π β (topGenβπ΅) = {π₯ β£ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦)}) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 βwex 1492 β wcel 2148 {cab 2163 β wss 3129 βͺ cuni 3809 βcfv 5216 topGenctg 12702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-topgen 12708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |