ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval3 GIF version

Theorem tgval3 13528
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12710 and tgval2 13521. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgval3 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦)})
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝑉,𝑦

Proof of Theorem tgval3
StepHypRef Expression
1 eltg3 13527 . 2 (𝐡 ∈ 𝑉 β†’ (π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦)))
21abbi2dv 2296 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦)})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  {cab 2163   βŠ† wss 3129  βˆͺ cuni 3809  β€˜cfv 5216  topGenctg 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-topgen 12708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator