| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add4i | GIF version | ||
| Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| add.1 | ⊢ 𝐴 ∈ ℂ |
| add.2 | ⊢ 𝐵 ∈ ℂ |
| add.3 | ⊢ 𝐶 ∈ ℂ |
| add4.4 | ⊢ 𝐷 ∈ ℂ |
| Ref | Expression |
|---|---|
| add4i | ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | add4.4 | . 2 ⊢ 𝐷 ∈ ℂ | |
| 5 | add4 8246 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | mp4an 427 | 1 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 + caddc 7941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-addcl 8034 ax-addcom 8038 ax-addass 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 df-ov 5957 |
| This theorem is referenced by: add42i 8251 negdii 8369 numma 9560 |
| Copyright terms: Public domain | W3C validator |