Step | Hyp | Ref
| Expression |
1 | | grppropd.1 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | grppropd.2 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | grppropd.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | 1, 2, 3 | mndpropd 12676 |
. . 3
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
5 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
6 | 2 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐿)) |
7 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
8 | 5, 7 | basmexd 12475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ V) |
9 | 6, 7 | basmexd 12475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ V) |
10 | 3 | ralrimivva 2552 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
11 | | oveq1 5860 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥(+g‘𝐾)𝑦) = (𝑧(+g‘𝐾)𝑦)) |
12 | | oveq1 5860 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥(+g‘𝐿)𝑦) = (𝑧(+g‘𝐿)𝑦)) |
13 | 11, 12 | eqeq12d 2185 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) ↔ (𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐿)𝑦))) |
14 | | oveq2 5861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → (𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐾)𝑤)) |
15 | | oveq2 5861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → (𝑧(+g‘𝐿)𝑦) = (𝑧(+g‘𝐿)𝑤)) |
16 | 14, 15 | eqeq12d 2185 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → ((𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐿)𝑦) ↔ (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤))) |
17 | 13, 16 | cbvral2v 2709 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
18 | 10, 17 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
19 | 18 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
20 | 19 | r19.21bi 2558 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
21 | 20 | r19.21bi 2558 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
22 | 21 | anasss 397 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
23 | 5, 6, 8, 9, 22 | grpidpropdg 12628 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝐾) = (0g‘𝐿)) |
24 | 3, 23 | eqeq12d 2185 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
25 | 24 | anass1rs 566 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
26 | 25 | rexbidva 2467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
27 | 26 | ralbidva 2466 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
28 | 1 | rexeqdv 2672 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
29 | 1, 28 | raleqbidv 2677 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
30 | 2 | rexeqdv 2672 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
31 | 2, 30 | raleqbidv 2677 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
32 | 27, 29, 31 | 3bitr3d 217 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
33 | 4, 32 | anbi12d 470 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
34 | | eqid 2170 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
35 | | eqid 2170 |
. . 3
⊢
(+g‘𝐾) = (+g‘𝐾) |
36 | | eqid 2170 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
37 | 34, 35, 36 | isgrp 12714 |
. 2
⊢ (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
38 | | eqid 2170 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
39 | | eqid 2170 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
40 | | eqid 2170 |
. . 3
⊢
(0g‘𝐿) = (0g‘𝐿) |
41 | 38, 39, 40 | isgrp 12714 |
. 2
⊢ (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
42 | 33, 37, 41 | 3bitr4g 222 |
1
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |