ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropd GIF version

Theorem grppropd 13558
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1 (𝜑𝐵 = (Base‘𝐾))
grppropd.2 (𝜑𝐵 = (Base‘𝐿))
grppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grppropd (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grppropd
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 grppropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 grppropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 13481 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
51adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
62adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
7 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
85, 7basmexd 13101 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ V)
96, 7basmexd 13101 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ V)
103ralrimivva 2612 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
11 oveq1 6014 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑦))
12 oveq1 6014 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑦))
1311, 12eqeq12d 2244 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦)))
14 oveq2 6015 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑤))
15 oveq2 6015 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑤))
1614, 15eqeq12d 2244 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤)))
1713, 16cbvral2v 2778 . . . . . . . . . . . . . 14 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1810, 17sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1918adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2019r19.21bi 2618 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ∀𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2120r19.21bi 2618 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) ∧ 𝑤𝐵) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2221anasss 399 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
235, 6, 8, 9, 22grpidpropdg 13415 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
243, 23eqeq12d 2244 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2524anass1rs 571 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2625rexbidva 2527 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2726ralbidva 2526 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
281rexeqdv 2735 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
291, 28raleqbidv 2744 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
302rexeqdv 2735 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
312, 30raleqbidv 2744 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
3227, 29, 313bitr3d 218 . . 3 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
334, 32anbi12d 473 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
34 eqid 2229 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2229 . . 3 (+g𝐾) = (+g𝐾)
36 eqid 2229 . . 3 (0g𝐾) = (0g𝐾)
3734, 35, 36isgrp 13547 . 2 (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
38 eqid 2229 . . 3 (Base‘𝐿) = (Base‘𝐿)
39 eqid 2229 . . 3 (+g𝐿) = (+g𝐿)
40 eqid 2229 . . 3 (0g𝐿) = (0g𝐿)
4138, 39, 40isgrp 13547 . 2 (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
4233, 37, 413bitr4g 223 1 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  0gc0g 13297  Mndcmnd 13457  Grpcgrp 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544
This theorem is referenced by:  grpprop  13559  grppropstrg  13560  ghmpropd  13828  ablpropd  13841  ringpropd  14009  opprring  14050  opprsubgg  14055  lmodprop2d  14320  sralmod  14422  psrgrp  14657
  Copyright terms: Public domain W3C validator