ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropd GIF version

Theorem grppropd 12724
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1 (𝜑𝐵 = (Base‘𝐾))
grppropd.2 (𝜑𝐵 = (Base‘𝐿))
grppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grppropd (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grppropd
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 grppropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 grppropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 12676 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
51adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
62adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
7 simprl 526 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
85, 7basmexd 12475 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ V)
96, 7basmexd 12475 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ V)
103ralrimivva 2552 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
11 oveq1 5860 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑦))
12 oveq1 5860 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑦))
1311, 12eqeq12d 2185 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦)))
14 oveq2 5861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑤))
15 oveq2 5861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑤))
1614, 15eqeq12d 2185 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤)))
1713, 16cbvral2v 2709 . . . . . . . . . . . . . 14 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1810, 17sylib 121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1918adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2019r19.21bi 2558 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ∀𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2120r19.21bi 2558 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) ∧ 𝑤𝐵) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2221anasss 397 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
235, 6, 8, 9, 22grpidpropdg 12628 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
243, 23eqeq12d 2185 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2524anass1rs 566 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2625rexbidva 2467 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2726ralbidva 2466 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
281rexeqdv 2672 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
291, 28raleqbidv 2677 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
302rexeqdv 2672 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
312, 30raleqbidv 2677 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
3227, 29, 313bitr3d 217 . . 3 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
334, 32anbi12d 470 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
34 eqid 2170 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2170 . . 3 (+g𝐾) = (+g𝐾)
36 eqid 2170 . . 3 (0g𝐾) = (0g𝐾)
3734, 35, 36isgrp 12714 . 2 (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
38 eqid 2170 . . 3 (Base‘𝐿) = (Base‘𝐿)
39 eqid 2170 . . 3 (+g𝐿) = (+g𝐿)
40 eqid 2170 . . 3 (0g𝐿) = (0g𝐿)
4138, 39, 40isgrp 12714 . 2 (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
4233, 37, 413bitr4g 222 1 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  Mndcmnd 12652  Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711
This theorem is referenced by:  grpprop  12725
  Copyright terms: Public domain W3C validator