ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropd GIF version

Theorem grppropd 12928
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1 (𝜑𝐵 = (Base‘𝐾))
grppropd.2 (𝜑𝐵 = (Base‘𝐿))
grppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grppropd (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grppropd
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 grppropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 grppropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 12867 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
51adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
62adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
7 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
85, 7basmexd 12540 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ V)
96, 7basmexd 12540 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ V)
103ralrimivva 2572 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
11 oveq1 5898 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑦))
12 oveq1 5898 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑦))
1311, 12eqeq12d 2204 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦)))
14 oveq2 5899 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐾)𝑦) = (𝑧(+g𝐾)𝑤))
15 oveq2 5899 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑧(+g𝐿)𝑦) = (𝑧(+g𝐿)𝑤))
1614, 15eqeq12d 2204 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑧(+g𝐾)𝑦) = (𝑧(+g𝐿)𝑦) ↔ (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤)))
1713, 16cbvral2v 2731 . . . . . . . . . . . . . 14 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦) ↔ ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1810, 17sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
1918adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2019r19.21bi 2578 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ∀𝑤𝐵 (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2120r19.21bi 2578 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) ∧ 𝑤𝐵) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
2221anasss 399 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
235, 6, 8, 9, 22grpidpropdg 12816 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
243, 23eqeq12d 2204 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2524anass1rs 571 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2625rexbidva 2487 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
2726ralbidva 2486 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
281rexeqdv 2693 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
291, 28raleqbidv 2698 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
302rexeqdv 2693 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
312, 30raleqbidv 2698 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
3227, 29, 313bitr3d 218 . . 3 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
334, 32anbi12d 473 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
34 eqid 2189 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2189 . . 3 (+g𝐾) = (+g𝐾)
36 eqid 2189 . . 3 (0g𝐾) = (0g𝐾)
3734, 35, 36isgrp 12917 . 2 (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
38 eqid 2189 . . 3 (Base‘𝐿) = (Base‘𝐿)
39 eqid 2189 . . 3 (+g𝐿) = (+g𝐿)
40 eqid 2189 . . 3 (0g𝐿) = (0g𝐿)
4138, 39, 40isgrp 12917 . 2 (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
4233, 37, 413bitr4g 223 1 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  wrex 2469  Vcvv 2752  cfv 5231  (class class class)co 5891  Basecbs 12480  +gcplusg 12555  0gc0g 12727  Mndcmnd 12843  Grpcgrp 12911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239  df-riota 5847  df-ov 5894  df-inn 8938  df-2 8996  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914
This theorem is referenced by:  grpprop  12929  grppropstrg  12930  ghmpropd  13183  ablpropd  13196  ringpropd  13353  opprring  13390  opprsubgg  13395  lmodprop2d  13625  sralmod  13727
  Copyright terms: Public domain W3C validator