| Step | Hyp | Ref
| Expression |
| 1 | | grppropd.1 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 2 | | grppropd.2 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 3 | | grppropd.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 4 | 1, 2, 3 | mndpropd 13081 |
. . 3
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 5 | 1 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
| 6 | 2 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐿)) |
| 7 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 8 | 5, 7 | basmexd 12738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ V) |
| 9 | 6, 7 | basmexd 12738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ V) |
| 10 | 3 | ralrimivva 2579 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 11 | | oveq1 5929 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥(+g‘𝐾)𝑦) = (𝑧(+g‘𝐾)𝑦)) |
| 12 | | oveq1 5929 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥(+g‘𝐿)𝑦) = (𝑧(+g‘𝐿)𝑦)) |
| 13 | 11, 12 | eqeq12d 2211 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) ↔ (𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐿)𝑦))) |
| 14 | | oveq2 5930 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → (𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐾)𝑤)) |
| 15 | | oveq2 5930 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → (𝑧(+g‘𝐿)𝑦) = (𝑧(+g‘𝐿)𝑤)) |
| 16 | 14, 15 | eqeq12d 2211 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → ((𝑧(+g‘𝐾)𝑦) = (𝑧(+g‘𝐿)𝑦) ↔ (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤))) |
| 17 | 13, 16 | cbvral2v 2742 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 18 | 10, 17 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 19 | 18 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 20 | 19 | r19.21bi 2585 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ∀𝑤 ∈ 𝐵 (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 21 | 20 | r19.21bi 2585 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 22 | 21 | anasss 399 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 23 | 5, 6, 8, 9, 22 | grpidpropdg 13017 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝐾) = (0g‘𝐿)) |
| 24 | 3, 23 | eqeq12d 2211 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 25 | 24 | anass1rs 571 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 26 | 25 | rexbidva 2494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 27 | 26 | ralbidva 2493 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 28 | 1 | rexeqdv 2700 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
| 29 | 1, 28 | raleqbidv 2709 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
| 30 | 2 | rexeqdv 2700 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 31 | 2, 30 | raleqbidv 2709 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 32 | 27, 29, 31 | 3bitr3d 218 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 33 | 4, 32 | anbi12d 473 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
| 34 | | eqid 2196 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 35 | | eqid 2196 |
. . 3
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 36 | | eqid 2196 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
| 37 | 34, 35, 36 | isgrp 13138 |
. 2
⊢ (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
| 38 | | eqid 2196 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 39 | | eqid 2196 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 40 | | eqid 2196 |
. . 3
⊢
(0g‘𝐿) = (0g‘𝐿) |
| 41 | 38, 39, 40 | isgrp 13138 |
. 2
⊢ (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
| 42 | 33, 37, 41 | 3bitr4g 223 |
1
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |