Proof of Theorem reapmul1
Step | Hyp | Ref
| Expression |
1 | | 0re 7920 |
. . . . 5
⊢ 0 ∈
ℝ |
2 | | reaplt 8507 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐶 # 0
↔ (𝐶 < 0 ∨ 0
< 𝐶))) |
3 | 1, 2 | mpan2 423 |
. . . 4
⊢ (𝐶 ∈ ℝ → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶))) |
4 | 3 | pm5.32i 451 |
. . 3
⊢ ((𝐶 ∈ ℝ ∧ 𝐶 # 0) ↔ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) |
5 | | simp1 992 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈
ℝ) |
6 | 5 | recnd 7948 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈
ℂ) |
7 | | simp3l 1020 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈
ℝ) |
8 | 7 | recnd 7948 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈
ℂ) |
9 | 6, 8 | mulneg2d 8331 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · -𝐶) = -(𝐴 · 𝐶)) |
10 | | simp2 993 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈
ℝ) |
11 | 10 | recnd 7948 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈
ℂ) |
12 | 11, 8 | mulneg2d 8331 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶)) |
13 | 9, 12 | breq12d 4002 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · -𝐶) # (𝐵 · -𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶))) |
14 | 7 | renegcld 8299 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -𝐶 ∈
ℝ) |
15 | | simp3r 1021 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 < 0) |
16 | 7 | lt0neg1d 8434 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐶 < 0 ↔ 0 < -𝐶)) |
17 | 15, 16 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 0 < -𝐶) |
18 | | reapmul1lem 8513 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐶 ∈ ℝ ∧ 0 <
-𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶))) |
19 | 5, 10, 14, 17, 18 | syl112anc 1237 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶))) |
20 | 5, 7 | remulcld 7950 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · 𝐶) ∈ ℝ) |
21 | 10, 7 | remulcld 7950 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · 𝐶) ∈ ℝ) |
22 | 20, 21 | ltnegd 8442 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))) |
23 | 21, 20 | ltnegd 8442 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐵 · 𝐶) < (𝐴 · 𝐶) ↔ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))) |
24 | 22, 23 | orbi12d 788 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))) |
25 | | reaplt 8507 |
. . . . . . . . . 10
⊢ (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)))) |
26 | 20, 21, 25 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)))) |
27 | 20 | renegcld 8299 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐴 · 𝐶) ∈ ℝ) |
28 | 21 | renegcld 8299 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐵 · 𝐶) ∈ ℝ) |
29 | | reaplt 8507 |
. . . . . . . . . . 11
⊢ ((-(𝐴 · 𝐶) ∈ ℝ ∧ -(𝐵 · 𝐶) ∈ ℝ) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))) |
30 | 27, 28, 29 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))) |
31 | | orcom 723 |
. . . . . . . . . 10
⊢ ((-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))) |
32 | 30, 31 | bitrdi 195 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))) |
33 | 24, 26, 32 | 3bitr4d 219 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶))) |
34 | 13, 19, 33 | 3bitr4d 219 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
35 | 34 | 3expa 1198 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
36 | 35 | anassrs 398 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 𝐶 < 0) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
37 | | reapmul1lem 8513 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
38 | 37 | 3expa 1198 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
39 | 38 | anassrs 398 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 0 <
𝐶) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
40 | 36, 39 | jaodan 792 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ (𝐶 < 0 ∨ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
41 | 40 | anasss 397 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
42 | 4, 41 | sylan2b 285 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
43 | 42 | 3impa 1189 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |