ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 GIF version

Theorem reapmul1 8622
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8815. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 8026 . . . . 5 0 ∈ ℝ
2 reaplt 8615 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
31, 2mpan2 425 . . . 4 (𝐶 ∈ ℝ → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
43pm5.32i 454 . . 3 ((𝐶 ∈ ℝ ∧ 𝐶 # 0) ↔ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶)))
5 simp1 999 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℝ)
65recnd 8055 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℂ)
7 simp3l 1027 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℝ)
87recnd 8055 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℂ)
96, 8mulneg2d 8438 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · -𝐶) = -(𝐴 · 𝐶))
10 simp2 1000 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℝ)
1110recnd 8055 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℂ)
1211, 8mulneg2d 8438 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
139, 12breq12d 4046 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · -𝐶) # (𝐵 · -𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
147renegcld 8406 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -𝐶 ∈ ℝ)
15 simp3r 1028 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 < 0)
167lt0neg1d 8542 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐶 < 0 ↔ 0 < -𝐶))
1715, 16mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 0 < -𝐶)
18 reapmul1lem 8621 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐶 ∈ ℝ ∧ 0 < -𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
195, 10, 14, 17, 18syl112anc 1253 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
205, 7remulcld 8057 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · 𝐶) ∈ ℝ)
2110, 7remulcld 8057 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · 𝐶) ∈ ℝ)
2220, 21ltnegd 8550 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))
2321, 20ltnegd 8550 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐵 · 𝐶) < (𝐴 · 𝐶) ↔ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
2422, 23orbi12d 794 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
25 reaplt 8615 . . . . . . . . . 10 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2620, 21, 25syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2720renegcld 8406 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐴 · 𝐶) ∈ ℝ)
2821renegcld 8406 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐵 · 𝐶) ∈ ℝ)
29 reaplt 8615 . . . . . . . . . . 11 ((-(𝐴 · 𝐶) ∈ ℝ ∧ -(𝐵 · 𝐶) ∈ ℝ) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
3027, 28, 29syl2anc 411 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
31 orcom 729 . . . . . . . . . 10 ((-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
3230, 31bitrdi 196 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
3324, 26, 323bitr4d 220 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
3413, 19, 333bitr4d 220 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
35343expa 1205 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3635anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 𝐶 < 0) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
37 reapmul1lem 8621 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
38373expa 1205 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3938anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 0 < 𝐶) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4036, 39jaodan 798 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ (𝐶 < 0 ∨ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4140anasss 399 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
424, 41sylan2b 287 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
43423impa 1196 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879   · cmul 7884   < clt 8061  -cneg 8198   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator