ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 GIF version

Theorem reapmul1 8738
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8931. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 8142 . . . . 5 0 ∈ ℝ
2 reaplt 8731 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
31, 2mpan2 425 . . . 4 (𝐶 ∈ ℝ → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
43pm5.32i 454 . . 3 ((𝐶 ∈ ℝ ∧ 𝐶 # 0) ↔ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶)))
5 simp1 1021 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℝ)
65recnd 8171 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℂ)
7 simp3l 1049 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℝ)
87recnd 8171 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℂ)
96, 8mulneg2d 8554 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · -𝐶) = -(𝐴 · 𝐶))
10 simp2 1022 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℝ)
1110recnd 8171 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℂ)
1211, 8mulneg2d 8554 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
139, 12breq12d 4095 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · -𝐶) # (𝐵 · -𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
147renegcld 8522 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -𝐶 ∈ ℝ)
15 simp3r 1050 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 < 0)
167lt0neg1d 8658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐶 < 0 ↔ 0 < -𝐶))
1715, 16mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 0 < -𝐶)
18 reapmul1lem 8737 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐶 ∈ ℝ ∧ 0 < -𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
195, 10, 14, 17, 18syl112anc 1275 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
205, 7remulcld 8173 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · 𝐶) ∈ ℝ)
2110, 7remulcld 8173 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · 𝐶) ∈ ℝ)
2220, 21ltnegd 8666 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))
2321, 20ltnegd 8666 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐵 · 𝐶) < (𝐴 · 𝐶) ↔ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
2422, 23orbi12d 798 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
25 reaplt 8731 . . . . . . . . . 10 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2620, 21, 25syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2720renegcld 8522 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐴 · 𝐶) ∈ ℝ)
2821renegcld 8522 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐵 · 𝐶) ∈ ℝ)
29 reaplt 8731 . . . . . . . . . . 11 ((-(𝐴 · 𝐶) ∈ ℝ ∧ -(𝐵 · 𝐶) ∈ ℝ) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
3027, 28, 29syl2anc 411 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
31 orcom 733 . . . . . . . . . 10 ((-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
3230, 31bitrdi 196 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
3324, 26, 323bitr4d 220 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
3413, 19, 333bitr4d 220 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
35343expa 1227 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3635anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 𝐶 < 0) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
37 reapmul1lem 8737 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
38373expa 1227 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3938anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 0 < 𝐶) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4036, 39jaodan 802 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ (𝐶 < 0 ∨ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4140anasss 399 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
424, 41sylan2b 287 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
43423impa 1218 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002  wcel 2200   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995   · cmul 8000   < clt 8177  -cneg 8314   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator