ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 GIF version

Theorem reapmul1 8016
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8197. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 7435 . . . . 5 0 ∈ ℝ
2 reaplt 8009 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
31, 2mpan2 416 . . . 4 (𝐶 ∈ ℝ → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
43pm5.32i 442 . . 3 ((𝐶 ∈ ℝ ∧ 𝐶 # 0) ↔ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶)))
5 simp1 941 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℝ)
65recnd 7463 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℂ)
7 simp3l 969 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℝ)
87recnd 7463 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℂ)
96, 8mulneg2d 7837 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · -𝐶) = -(𝐴 · 𝐶))
10 simp2 942 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℝ)
1110recnd 7463 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℂ)
1211, 8mulneg2d 7837 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
139, 12breq12d 3835 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · -𝐶) # (𝐵 · -𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
147renegcld 7805 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -𝐶 ∈ ℝ)
15 simp3r 970 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 < 0)
167lt0neg1d 7937 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐶 < 0 ↔ 0 < -𝐶))
1715, 16mpbid 145 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 0 < -𝐶)
18 reapmul1lem 8015 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐶 ∈ ℝ ∧ 0 < -𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
195, 10, 14, 17, 18syl112anc 1176 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
205, 7remulcld 7465 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · 𝐶) ∈ ℝ)
2110, 7remulcld 7465 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · 𝐶) ∈ ℝ)
2220, 21ltnegd 7944 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))
2321, 20ltnegd 7944 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐵 · 𝐶) < (𝐴 · 𝐶) ↔ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
2422, 23orbi12d 740 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
25 reaplt 8009 . . . . . . . . . 10 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2620, 21, 25syl2anc 403 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2720renegcld 7805 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐴 · 𝐶) ∈ ℝ)
2821renegcld 7805 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐵 · 𝐶) ∈ ℝ)
29 reaplt 8009 . . . . . . . . . . 11 ((-(𝐴 · 𝐶) ∈ ℝ ∧ -(𝐵 · 𝐶) ∈ ℝ) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
3027, 28, 29syl2anc 403 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
31 orcom 680 . . . . . . . . . 10 ((-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
3230, 31syl6bb 194 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
3324, 26, 323bitr4d 218 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
3413, 19, 333bitr4d 218 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
35343expa 1141 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3635anassrs 392 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 𝐶 < 0) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
37 reapmul1lem 8015 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
38373expa 1141 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3938anassrs 392 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 0 < 𝐶) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4036, 39jaodan 744 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ (𝐶 < 0 ∨ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4140anasss 391 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
424, 41sylan2b 281 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
43423impa 1136 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 922  wcel 1436   class class class wbr 3822  (class class class)co 5615  cr 7296  0cc0 7297   · cmul 7302   < clt 7469  -cneg 7601   # cap 8002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-ltxr 7474  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator