ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 GIF version

Theorem reapmul1 8550
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8743. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 7956 . . . . 5 0 ∈ ℝ
2 reaplt 8543 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
31, 2mpan2 425 . . . 4 (𝐶 ∈ ℝ → (𝐶 # 0 ↔ (𝐶 < 0 ∨ 0 < 𝐶)))
43pm5.32i 454 . . 3 ((𝐶 ∈ ℝ ∧ 𝐶 # 0) ↔ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶)))
5 simp1 997 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℝ)
65recnd 7984 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐴 ∈ ℂ)
7 simp3l 1025 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℝ)
87recnd 7984 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 ∈ ℂ)
96, 8mulneg2d 8367 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · -𝐶) = -(𝐴 · 𝐶))
10 simp2 998 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℝ)
1110recnd 7984 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐵 ∈ ℂ)
1211, 8mulneg2d 8367 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
139, 12breq12d 4016 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · -𝐶) # (𝐵 · -𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
147renegcld 8335 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -𝐶 ∈ ℝ)
15 simp3r 1026 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 𝐶 < 0)
167lt0neg1d 8470 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐶 < 0 ↔ 0 < -𝐶))
1715, 16mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → 0 < -𝐶)
18 reapmul1lem 8549 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐶 ∈ ℝ ∧ 0 < -𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
195, 10, 14, 17, 18syl112anc 1242 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · -𝐶) # (𝐵 · -𝐶)))
205, 7remulcld 7986 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 · 𝐶) ∈ ℝ)
2110, 7remulcld 7986 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐵 · 𝐶) ∈ ℝ)
2220, 21ltnegd 8478 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)))
2321, 20ltnegd 8478 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐵 · 𝐶) < (𝐴 · 𝐶) ↔ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
2422, 23orbi12d 793 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
25 reaplt 8543 . . . . . . . . . 10 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2620, 21, 25syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
2720renegcld 8335 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐴 · 𝐶) ∈ ℝ)
2821renegcld 8335 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → -(𝐵 · 𝐶) ∈ ℝ)
29 reaplt 8543 . . . . . . . . . . 11 ((-(𝐴 · 𝐶) ∈ ℝ ∧ -(𝐵 · 𝐶) ∈ ℝ) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
3027, 28, 29syl2anc 411 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶))))
31 orcom 728 . . . . . . . . . 10 ((-(𝐴 · 𝐶) < -(𝐵 · 𝐶) ∨ -(𝐵 · 𝐶) < -(𝐴 · 𝐶)) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶)))
3230, 31bitrdi 196 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (-(𝐴 · 𝐶) # -(𝐵 · 𝐶) ↔ (-(𝐵 · 𝐶) < -(𝐴 · 𝐶) ∨ -(𝐴 · 𝐶) < -(𝐵 · 𝐶))))
3324, 26, 323bitr4d 220 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) ↔ -(𝐴 · 𝐶) # -(𝐵 · 𝐶)))
3413, 19, 333bitr4d 220 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
35343expa 1203 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3635anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 𝐶 < 0) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
37 reapmul1lem 8549 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
38373expa 1203 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
3938anassrs 400 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ 0 < 𝐶) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4036, 39jaodan 797 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) ∧ (𝐶 < 0 ∨ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
4140anasss 399 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐶 < 0 ∨ 0 < 𝐶))) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
424, 41sylan2b 287 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
43423impa 1194 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978  wcel 2148   class class class wbr 4003  (class class class)co 5874  cr 7809  0cc0 7810   · cmul 7815   < clt 7990  -cneg 8127   # cap 8536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator