Step | Hyp | Ref
| Expression |
1 | | nn0uz 9500 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 9203 |
. 2
⊢ (𝜑 → 0 ∈
ℤ) |
3 | | seqex 10382 |
. . 3
⊢ seq0( + ,
𝐻) ∈
V |
4 | 3 | a1i 9 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ∈ V) |
5 | | mertens.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
6 | | 0zd 9203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ∈
ℤ) |
7 | | nn0z 9211 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
8 | 7 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
9 | 6, 8 | fzfigd 10366 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
10 | | simpl 108 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝜑) |
11 | | elfznn0 10049 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0) |
12 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
13 | 10, 11, 12 | syl2an 287 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ) |
14 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 − 𝑗) → (𝐺‘𝑖) = (𝐺‘(𝑘 − 𝑗))) |
15 | 14 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑖 = (𝑘 − 𝑗) → ((𝐺‘𝑖) ∈ ℂ ↔ (𝐺‘(𝑘 − 𝑗)) ∈ ℂ)) |
16 | | mertens.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
17 | | mertens.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
18 | 16, 17 | eqeltrd 2243 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
19 | 18 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺‘𝑘) ∈ ℂ) |
20 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝐺‘𝑘) = (𝐺‘𝑖)) |
21 | 20 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑖) ∈ ℂ)) |
22 | 21 | cbvralv 2692 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ0 (𝐺‘𝑘) ∈ ℂ ↔ ∀𝑖 ∈ ℕ0
(𝐺‘𝑖) ∈ ℂ) |
23 | 19, 22 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
24 | 23 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
25 | | fznn0sub 9992 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑘) → (𝑘 − 𝑗) ∈
ℕ0) |
26 | 25 | adantl 275 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈
ℕ0) |
27 | 15, 24, 26 | rspcdva 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − 𝑗)) ∈ ℂ) |
28 | 13, 27 | mulcld 7919 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
29 | 9, 28 | fsumcl 11341 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
30 | 5, 29 | eqeltrd 2243 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) ∈ ℂ) |
31 | 1, 2, 30 | serf 10409 |
. . 3
⊢ (𝜑 → seq0( + , 𝐻):ℕ0⟶ℂ) |
32 | 31 | ffvelrnda 5620 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (seq0( +
, 𝐻)‘𝑚) ∈
ℂ) |
33 | | mertens.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
34 | 33 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = 𝐴) |
35 | | mertens.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
36 | 35 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐾‘𝑗) = (abs‘𝐴)) |
37 | 12 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
38 | 16 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐺‘𝑘) = 𝐵) |
39 | 17 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
40 | 5 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
41 | | mertens.7 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
42 | 41 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐾) ∈ dom ⇝
) |
43 | | mertens.8 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
44 | 43 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐺) ∈ dom ⇝
) |
45 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
46 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑘 → (𝐺‘𝑙) = (𝐺‘𝑘)) |
47 | 46 | cbvsumv 11302 |
. . . . . . . . . . 11
⊢
Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) |
48 | | fvoveq1 5865 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (ℤ≥‘(𝑖 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
49 | 48 | sumeq1d 11307 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
50 | 47, 49 | syl5eq 2211 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
51 | 50 | fveq2d 5490 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
52 | 51 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ 𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
53 | 52 | cbvrexv 2693 |
. . . . . . 7
⊢
(∃𝑖 ∈
(0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
54 | | eqeq1 2172 |
. . . . . . . 8
⊢ (𝑢 = 𝑧 → (𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
55 | 54 | rexbidv 2467 |
. . . . . . 7
⊢ (𝑢 = 𝑧 → (∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
56 | 53, 55 | syl5bb 191 |
. . . . . 6
⊢ (𝑢 = 𝑧 → (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
57 | 56 | cbvabv 2291 |
. . . . 5
⊢ {𝑢 ∣ ∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
58 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝐾‘𝑖) = (𝐾‘𝑗)) |
59 | 58 | cbvsumv 11302 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) = Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) |
60 | 59 | oveq1i 5852 |
. . . . . . . . . 10
⊢
(Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) |
61 | 60 | oveq2i 5853 |
. . . . . . . . 9
⊢ ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0
(𝐾‘𝑖) + 1)) = ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
62 | 61 | breq2i 3990 |
. . . . . . . 8
⊢
((abs‘Σ𝑖
∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
63 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐺‘𝑖) = (𝐺‘𝑘)) |
64 | 63 | cbvsumv 11302 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) |
65 | | fvoveq1 5865 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑛 → (ℤ≥‘(𝑢 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
66 | 65 | sumeq1d 11307 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
67 | 64, 66 | syl5eq 2211 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑛 → Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
68 | 67 | fveq2d 5490 |
. . . . . . . . 9
⊢ (𝑢 = 𝑛 → (abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
69 | 68 | breq1d 3992 |
. . . . . . . 8
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
70 | 62, 69 | syl5bb 191 |
. . . . . . 7
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
71 | 70 | cbvralv 2692 |
. . . . . 6
⊢
(∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
72 | 71 | anbi2i 453 |
. . . . 5
⊢ ((𝑠 ∈ ℕ ∧
∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1))) ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
73 | 34, 36, 37, 38, 39, 40, 42, 44, 45, 57, 72 | mertenslem2 11477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥) |
74 | | eluznn0 9537 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑦)) → 𝑚 ∈ ℕ0) |
75 | | 0zd 9203 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 0 ∈
ℤ) |
76 | | nn0z 9211 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
77 | 76 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℤ) |
78 | 75, 77 | fzfigd 10366 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(0...𝑚) ∈
Fin) |
79 | | simpll 519 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑) |
80 | | elfznn0 10049 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0) |
81 | 80 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℕ0) |
82 | 1, 2, 16, 17, 43 | isumcl 11366 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
83 | 82 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 𝐵
∈ ℂ) |
84 | 33, 12 | eqeltrd 2243 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) ∈ ℂ) |
85 | 83, 84 | mulcld 7919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈
ℂ) |
86 | 79, 81, 85 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) ∈ ℂ) |
87 | | 0zd 9203 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 0 ∈ ℤ) |
88 | 77 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑚 ∈ ℤ) |
89 | 81 | nn0zd 9311 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℤ) |
90 | 88, 89 | zsubcld 9318 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈ ℤ) |
91 | 87, 90 | fzfigd 10366 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(𝑚 − 𝑗)) ∈ Fin) |
92 | | simplll 523 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝜑) |
93 | 80 | ad2antlr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑗 ∈ ℕ0) |
94 | 92, 93, 12 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝐴 ∈ ℂ) |
95 | | elfznn0 10049 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...(𝑚 − 𝑗)) → 𝑘 ∈ ℕ0) |
96 | 95 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑘 ∈ ℕ0) |
97 | 92, 96, 18 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) ∈ ℂ) |
98 | 94, 97 | mulcld 7919 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
99 | 91, 98 | fsumcl 11341 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
100 | 78, 86, 99 | fsumsub 11393 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
101 | 79, 81, 12 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ) |
102 | 82 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
103 | 91, 97 | fsumcl 11341 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) ∈ ℂ) |
104 | 101, 102,
103 | subdid 8312 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)))) |
105 | | eqid 2165 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘((𝑚 − 𝑗) + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1)) |
106 | | fznn0sub 9992 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑚) → (𝑚 − 𝑗) ∈
ℕ0) |
107 | 106 | adantl 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
108 | | peano2nn0 9154 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 − 𝑗) ∈ ℕ0 → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
109 | 107, 108 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
110 | 79, 16 | sylan 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
111 | 79, 17 | sylan 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
112 | 43 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ ) |
113 | 1, 105, 109, 110, 111, 112 | isumsplit 11432 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
114 | 107 | nn0cnd 9169 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈ ℂ) |
115 | | ax-1cn 7846 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℂ |
116 | | pncan 8104 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 − 𝑗) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
117 | 114, 115,
116 | sylancl 410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
118 | 117 | oveq2d 5858 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(((𝑚 − 𝑗) + 1) − 1)) = (0...(𝑚 − 𝑗))) |
119 | 118 | sumeq1d 11307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
120 | 92, 96, 16 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) = 𝐵) |
121 | 120 | sumeq2dv 11309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
122 | 119, 121 | eqtr4d 2201 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) |
123 | 122 | oveq1d 5857 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
124 | 113, 123 | eqtrd 2198 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
125 | 124 | oveq1d 5857 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = ((Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) |
126 | 109 | nn0zd 9311 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
127 | | simplll 523 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
128 | | eluznn0 9537 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 − 𝑗) + 1) ∈ ℕ0 ∧ 𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
129 | 109, 128 | sylan 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
130 | 127, 129,
16 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
131 | 127, 129,
17 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
132 | 110, 111 | eqeltrd 2243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
133 | 1, 109, 132 | iserex 11280 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )) |
134 | 112, 133 | mpbid 146 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
135 | 105, 126,
130, 131, 134 | isumcl 11366 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
136 | 103, 135 | pncan2d 8211 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
137 | 125, 136 | eqtrd 2198 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
138 | 137 | oveq2d 5858 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
139 | 12, 83 | mulcomd 7920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · 𝐴)) |
140 | 33 | oveq2d 5858 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴)) |
141 | 139, 140 | eqtr4d 2201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · (𝐹‘𝑗))) |
142 | 79, 81, 141 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
143 | 91, 101, 97 | fsummulc2 11389 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) |
144 | 142, 143 | oveq12d 5860 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
145 | 104, 138,
144 | 3eqtr3rd 2207 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
146 | 145 | sumeq2dv 11309 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
147 | | elnn0uz 9503 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ0
↔ 𝑗 ∈
(ℤ≥‘0)) |
148 | 147 | biimpri 132 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘0) → 𝑗 ∈ ℕ0) |
149 | 82 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈
(ℤ≥‘0)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
150 | 148, 84 | sylan2 284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘0))
→ (𝐹‘𝑗) ∈
ℂ) |
151 | 150 | adantlr 469 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈
(ℤ≥‘0)) → (𝐹‘𝑗) ∈ ℂ) |
152 | 149, 151 | mulcld 7919 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈
(ℤ≥‘0)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) ∈ ℂ) |
153 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
154 | 153 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
155 | | eqid 2165 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) |
156 | 154, 155 | fvmptg 5562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ0
∧ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈ ℂ) →
((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
157 | 148, 152,
156 | syl2an2 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
158 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
159 | 158, 1 | eleqtrdi 2259 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
(ℤ≥‘0)) |
160 | 157, 159,
152 | fsum3ser 11338 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚)) |
161 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
162 | 161 | oveq2d 5858 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘𝑘))) |
163 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐺‘𝑛) = (𝐺‘(𝑘 − 𝑗))) |
164 | 163 | oveq2d 5858 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
165 | 98 | anasss 397 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑗 ∈ (0...𝑚) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗)))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
166 | 162, 164,
165, 77 | fisum0diag2 11388 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
167 | | simpll 519 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → 𝜑) |
168 | | elnn0uz 9503 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
169 | 168 | biimpri 132 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
170 | 169 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
171 | 167, 170,
5 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
172 | 167, 170,
29 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
173 | 171, 159,
172 | fsum3ser 11338 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) = (seq0( + , 𝐻)‘𝑚)) |
174 | 166, 173 | eqtrd 2198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = (seq0( + , 𝐻)‘𝑚)) |
175 | 160, 174 | oveq12d 5860 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = ((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) |
176 | 100, 146,
175 | 3eqtr3rd 2207 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
177 | 176 | fveq2d 5490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) = (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
178 | 177 | breq1d 3992 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
179 | 74, 178 | sylan2 284 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑚 ∈
(ℤ≥‘𝑦))) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
180 | 179 | anassrs 398 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑦)) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
181 | 180 | ralbidva 2462 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
182 | 181 | rexbidva 2463 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
183 | 182 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
184 | 73, 183 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
185 | 184 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
186 | | mertens.f |
. . . . 5
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
187 | 1, 2, 33, 12, 186 | isumclim2 11363 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐹) ⇝ Σ𝑗 ∈ ℕ0
𝐴) |
188 | 84 | ralrimiva 2539 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) ∈ ℂ) |
189 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
190 | 189 | eleq1d 2235 |
. . . . . 6
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
191 | 190 | rspccva 2829 |
. . . . 5
⊢
((∀𝑗 ∈
ℕ0 (𝐹‘𝑗) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
192 | 188, 191 | sylan 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
193 | 82 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 𝐵
∈ ℂ) |
194 | 193, 192 | mulcld 7919 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑚)) ∈
ℂ) |
195 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
196 | 195 | oveq2d 5858 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
197 | 196, 155 | fvmptg 5562 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑚)) ∈ ℂ) →
((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
198 | 158, 194,
197 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
199 | 1, 2, 82, 187, 192, 198 | isermulc2 11281 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑘 ∈ ℕ0
𝐵 · Σ𝑗 ∈ ℕ0
𝐴)) |
200 | 1, 2, 33, 12, 186 | isumcl 11366 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 𝐴 ∈ ℂ) |
201 | 82, 200 | mulcomd 7920 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴) = (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) |
202 | 199, 201 | breqtrd 4008 |
. 2
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |
203 | 1, 2, 4, 32, 185, 202 | 2clim 11242 |
1
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |