Step | Hyp | Ref
| Expression |
1 | | nn0uz 9561 |
. 2
β’
β0 = (β€β₯β0) |
2 | | 0zd 9264 |
. 2
β’ (π β 0 β
β€) |
3 | | seqex 10446 |
. . 3
β’ seq0( + ,
π») β
V |
4 | 3 | a1i 9 |
. 2
β’ (π β seq0( + , π») β V) |
5 | | mertens.6 |
. . . . 5
β’ ((π β§ π β β0) β (π»βπ) = Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π)))) |
6 | | 0zd 9264 |
. . . . . . 7
β’ ((π β§ π β β0) β 0 β
β€) |
7 | | nn0z 9272 |
. . . . . . . 8
β’ (π β β0
β π β
β€) |
8 | 7 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β β0) β π β
β€) |
9 | 6, 8 | fzfigd 10430 |
. . . . . 6
β’ ((π β§ π β β0) β
(0...π) β
Fin) |
10 | | simpl 109 |
. . . . . . . 8
β’ ((π β§ π β β0) β π) |
11 | | elfznn0 10113 |
. . . . . . . 8
β’ (π β (0...π) β π β β0) |
12 | | mertens.3 |
. . . . . . . 8
β’ ((π β§ π β β0) β π΄ β
β) |
13 | 10, 11, 12 | syl2an 289 |
. . . . . . 7
β’ (((π β§ π β β0) β§ π β (0...π)) β π΄ β β) |
14 | | fveq2 5515 |
. . . . . . . . 9
β’ (π = (π β π) β (πΊβπ) = (πΊβ(π β π))) |
15 | 14 | eleq1d 2246 |
. . . . . . . 8
β’ (π = (π β π) β ((πΊβπ) β β β (πΊβ(π β π)) β β)) |
16 | | mertens.4 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β (πΊβπ) = π΅) |
17 | | mertens.5 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β π΅ β
β) |
18 | 16, 17 | eqeltrd 2254 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (πΊβπ) β β) |
19 | 18 | ralrimiva 2550 |
. . . . . . . . . 10
β’ (π β βπ β β0 (πΊβπ) β β) |
20 | | fveq2 5515 |
. . . . . . . . . . . 12
β’ (π = π β (πΊβπ) = (πΊβπ)) |
21 | 20 | eleq1d 2246 |
. . . . . . . . . . 11
β’ (π = π β ((πΊβπ) β β β (πΊβπ) β β)) |
22 | 21 | cbvralv 2703 |
. . . . . . . . . 10
β’
(βπ β
β0 (πΊβπ) β β β βπ β β0
(πΊβπ) β β) |
23 | 19, 22 | sylib 122 |
. . . . . . . . 9
β’ (π β βπ β β0 (πΊβπ) β β) |
24 | 23 | ad2antrr 488 |
. . . . . . . 8
β’ (((π β§ π β β0) β§ π β (0...π)) β βπ β β0 (πΊβπ) β β) |
25 | | fznn0sub 10056 |
. . . . . . . . 9
β’ (π β (0...π) β (π β π) β
β0) |
26 | 25 | adantl 277 |
. . . . . . . 8
β’ (((π β§ π β β0) β§ π β (0...π)) β (π β π) β
β0) |
27 | 15, 24, 26 | rspcdva 2846 |
. . . . . . 7
β’ (((π β§ π β β0) β§ π β (0...π)) β (πΊβ(π β π)) β β) |
28 | 13, 27 | mulcld 7977 |
. . . . . 6
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄ Β· (πΊβ(π β π))) β β) |
29 | 9, 28 | fsumcl 11407 |
. . . . 5
β’ ((π β§ π β β0) β
Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π))) β β) |
30 | 5, 29 | eqeltrd 2254 |
. . . 4
β’ ((π β§ π β β0) β (π»βπ) β β) |
31 | 1, 2, 30 | serf 10473 |
. . 3
β’ (π β seq0( + , π»):β0βΆβ) |
32 | 31 | ffvelcdmda 5651 |
. 2
β’ ((π β§ π β β0) β (seq0( +
, π»)βπ) β
β) |
33 | | mertens.1 |
. . . . . 6
β’ ((π β§ π β β0) β (πΉβπ) = π΄) |
34 | 33 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β (πΉβπ) = π΄) |
35 | | mertens.2 |
. . . . . 6
β’ ((π β§ π β β0) β (πΎβπ) = (absβπ΄)) |
36 | 35 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β (πΎβπ) = (absβπ΄)) |
37 | 12 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β π΄ β
β) |
38 | 16 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β (πΊβπ) = π΅) |
39 | 17 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β π΅ β
β) |
40 | 5 | adantlr 477 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ π β β0)
β (π»βπ) = Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π)))) |
41 | | mertens.7 |
. . . . . 6
β’ (π β seq0( + , πΎ) β dom β
) |
42 | 41 | adantr 276 |
. . . . 5
β’ ((π β§ π₯ β β+) β seq0( + ,
πΎ) β dom β
) |
43 | | mertens.8 |
. . . . . 6
β’ (π β seq0( + , πΊ) β dom β
) |
44 | 43 | adantr 276 |
. . . . 5
β’ ((π β§ π₯ β β+) β seq0( + ,
πΊ) β dom β
) |
45 | | simpr 110 |
. . . . 5
β’ ((π β§ π₯ β β+) β π₯ β
β+) |
46 | | fveq2 5515 |
. . . . . . . . . . . 12
β’ (π = π β (πΊβπ) = (πΊβπ)) |
47 | 46 | cbvsumv 11368 |
. . . . . . . . . . 11
β’
Ξ£π β
(β€β₯β(π + 1))(πΊβπ) = Ξ£π β (β€β₯β(π + 1))(πΊβπ) |
48 | | fvoveq1 5897 |
. . . . . . . . . . . 12
β’ (π = π β (β€β₯β(π + 1)) =
(β€β₯β(π + 1))) |
49 | 48 | sumeq1d 11373 |
. . . . . . . . . . 11
β’ (π = π β Ξ£π β (β€β₯β(π + 1))(πΊβπ) = Ξ£π β (β€β₯β(π + 1))(πΊβπ)) |
50 | 47, 49 | eqtrid 2222 |
. . . . . . . . . 10
β’ (π = π β Ξ£π β (β€β₯β(π + 1))(πΊβπ) = Ξ£π β (β€β₯β(π + 1))(πΊβπ)) |
51 | 50 | fveq2d 5519 |
. . . . . . . . 9
β’ (π = π β (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ))) |
52 | 51 | eqeq2d 2189 |
. . . . . . . 8
β’ (π = π β (π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) β π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)))) |
53 | 52 | cbvrexv 2704 |
. . . . . . 7
β’
(βπ β
(0...(π β 1))π’ = (absβΞ£π β
(β€β₯β(π + 1))(πΊβπ)) β βπ β (0...(π β 1))π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ))) |
54 | | eqeq1 2184 |
. . . . . . . 8
β’ (π’ = π§ β (π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) β π§ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)))) |
55 | 54 | rexbidv 2478 |
. . . . . . 7
β’ (π’ = π§ β (βπ β (0...(π β 1))π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) β βπ β (0...(π β 1))π§ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)))) |
56 | 53, 55 | bitrid 192 |
. . . . . 6
β’ (π’ = π§ β (βπ β (0...(π β 1))π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) β βπ β (0...(π β 1))π§ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ)))) |
57 | 56 | cbvabv 2302 |
. . . . 5
β’ {π’ β£ βπ β (0...(π β 1))π’ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ))} = {π§ β£ βπ β (0...(π β 1))π§ = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ))} |
58 | | fveq2 5515 |
. . . . . . . . . . . 12
β’ (π = π β (πΎβπ) = (πΎβπ)) |
59 | 58 | cbvsumv 11368 |
. . . . . . . . . . 11
β’
Ξ£π β
β0 (πΎβπ) = Ξ£π β β0 (πΎβπ) |
60 | 59 | oveq1i 5884 |
. . . . . . . . . 10
β’
(Ξ£π β
β0 (πΎβπ) + 1) = (Ξ£π β β0 (πΎβπ) + 1) |
61 | 60 | oveq2i 5885 |
. . . . . . . . 9
β’ ((π₯ / 2) / (Ξ£π β β0
(πΎβπ) + 1)) = ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)) |
62 | 61 | breq2i 4011 |
. . . . . . . 8
β’
((absβΞ£π
β (β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)) β (absβΞ£π β
(β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1))) |
63 | | fveq2 5515 |
. . . . . . . . . . . 12
β’ (π = π β (πΊβπ) = (πΊβπ)) |
64 | 63 | cbvsumv 11368 |
. . . . . . . . . . 11
β’
Ξ£π β
(β€β₯β(π’ + 1))(πΊβπ) = Ξ£π β (β€β₯β(π’ + 1))(πΊβπ) |
65 | | fvoveq1 5897 |
. . . . . . . . . . . 12
β’ (π’ = π β (β€β₯β(π’ + 1)) =
(β€β₯β(π + 1))) |
66 | 65 | sumeq1d 11373 |
. . . . . . . . . . 11
β’ (π’ = π β Ξ£π β (β€β₯β(π’ + 1))(πΊβπ) = Ξ£π β (β€β₯β(π + 1))(πΊβπ)) |
67 | 64, 66 | eqtrid 2222 |
. . . . . . . . . 10
β’ (π’ = π β Ξ£π β (β€β₯β(π’ + 1))(πΊβπ) = Ξ£π β (β€β₯β(π + 1))(πΊβπ)) |
68 | 67 | fveq2d 5519 |
. . . . . . . . 9
β’ (π’ = π β (absβΞ£π β (β€β₯β(π’ + 1))(πΊβπ)) = (absβΞ£π β (β€β₯β(π + 1))(πΊβπ))) |
69 | 68 | breq1d 4013 |
. . . . . . . 8
β’ (π’ = π β ((absβΞ£π β (β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)) β (absβΞ£π β
(β€β₯β(π + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)))) |
70 | 62, 69 | bitrid 192 |
. . . . . . 7
β’ (π’ = π β ((absβΞ£π β (β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)) β (absβΞ£π β
(β€β₯β(π + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)))) |
71 | 70 | cbvralv 2703 |
. . . . . 6
β’
(βπ’ β
(β€β₯βπ )(absβΞ£π β (β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)) β βπ β (β€β₯βπ )(absβΞ£π β
(β€β₯β(π + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1))) |
72 | 71 | anbi2i 457 |
. . . . 5
β’ ((π β β β§
βπ’ β
(β€β₯βπ )(absβΞ£π β (β€β₯β(π’ + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1))) β (π β β β§ βπ β
(β€β₯βπ )(absβΞ£π β (β€β₯β(π + 1))(πΊβπ)) < ((π₯ / 2) / (Ξ£π β β0 (πΎβπ) + 1)))) |
73 | 34, 36, 37, 38, 39, 40, 42, 44, 45, 57, 72 | mertenslem2 11543 |
. . . 4
β’ ((π β§ π₯ β β+) β
βπ¦ β
β0 βπ β (β€β₯βπ¦)(absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯) |
74 | | eluznn0 9598 |
. . . . . . . . 9
β’ ((π¦ β β0
β§ π β
(β€β₯βπ¦)) β π β β0) |
75 | | 0zd 9264 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β 0 β
β€) |
76 | | nn0z 9272 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β π β
β€) |
77 | 76 | adantl 277 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β π β
β€) |
78 | 75, 77 | fzfigd 10430 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β
(0...π) β
Fin) |
79 | | simpll 527 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β π) |
80 | | elfznn0 10113 |
. . . . . . . . . . . . . . 15
β’ (π β (0...π) β π β β0) |
81 | 80 | adantl 277 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β π β β0) |
82 | 1, 2, 16, 17, 43 | isumcl 11432 |
. . . . . . . . . . . . . . . 16
β’ (π β Ξ£π β β0 π΅ β β) |
83 | 82 | adantr 276 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β
Ξ£π β
β0 π΅
β β) |
84 | 33, 12 | eqeltrd 2254 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β (πΉβπ) β β) |
85 | 83, 84 | mulcld 7977 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β
(Ξ£π β
β0 π΅
Β· (πΉβπ)) β
β) |
86 | 79, 81, 85 | syl2anc 411 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β0) β§ π β (0...π)) β (Ξ£π β β0 π΅ Β· (πΉβπ)) β β) |
87 | | 0zd 9264 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β 0 β β€) |
88 | 77 | adantr 276 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β (0...π)) β π β β€) |
89 | 81 | nn0zd 9372 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β (0...π)) β π β β€) |
90 | 88, 89 | zsubcld 9379 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β (π β π) β β€) |
91 | 87, 90 | fzfigd 10430 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β (0...(π β π)) β Fin) |
92 | | simplll 533 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β π) |
93 | 80 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β π β β0) |
94 | 92, 93, 12 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β π΄ β β) |
95 | | elfznn0 10113 |
. . . . . . . . . . . . . . . . 17
β’ (π β (0...(π β π)) β π β β0) |
96 | 95 | adantl 277 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β π β β0) |
97 | 92, 96, 18 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β (πΊβπ) β β) |
98 | 94, 97 | mulcld 7977 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β (π΄ Β· (πΊβπ)) β β) |
99 | 91, 98 | fsumcl 11407 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ)) β β) |
100 | 78, 86, 99 | fsumsub 11459 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β
Ξ£π β (0...π)((Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ))) = (Ξ£π β (0...π)(Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...π)Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ)))) |
101 | 79, 81, 12 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β π΄ β β) |
102 | 82 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β β0 π΅ β β) |
103 | 91, 97 | fsumcl 11407 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (0...(π β π))(πΊβπ) β β) |
104 | 101, 102,
103 | subdid 8370 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄ Β· (Ξ£π β β0 π΅ β Ξ£π β (0...(π β π))(πΊβπ))) = ((π΄ Β· Ξ£π β β0 π΅) β (π΄ Β· Ξ£π β (0...(π β π))(πΊβπ)))) |
105 | | eqid 2177 |
. . . . . . . . . . . . . . . . . . 19
β’
(β€β₯β((π β π) + 1)) =
(β€β₯β((π β π) + 1)) |
106 | | fznn0sub 10056 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (0...π) β (π β π) β
β0) |
107 | 106 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β0) β§ π β (0...π)) β (π β π) β
β0) |
108 | | peano2nn0 9215 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β π) β β0 β ((π β π) + 1) β
β0) |
109 | 107, 108 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β0) β§ π β (0...π)) β ((π β π) + 1) β
β0) |
110 | 79, 16 | sylan 283 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β β0) β (πΊβπ) = π΅) |
111 | 79, 17 | sylan 283 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β β0) β π΅ β
β) |
112 | 43 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β0) β§ π β (0...π)) β seq0( + , πΊ) β dom β ) |
113 | 1, 105, 109, 110, 111, 112 | isumsplit 11498 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β β0 π΅ = (Ξ£π β (0...(((π β π) + 1) β 1))π΅ + Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
114 | 107 | nn0cnd 9230 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β β0) β§ π β (0...π)) β (π β π) β β) |
115 | | ax-1cn 7903 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ 1 β
β |
116 | | pncan 8162 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β π) β β β§ 1 β β)
β (((π β π) + 1) β 1) = (π β π)) |
117 | 114, 115,
116 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β β0) β§ π β (0...π)) β (((π β π) + 1) β 1) = (π β π)) |
118 | 117 | oveq2d 5890 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β β0) β§ π β (0...π)) β (0...(((π β π) + 1) β 1)) = (0...(π β π))) |
119 | 118 | sumeq1d 11373 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (0...(((π β π) + 1) β 1))π΅ = Ξ£π β (0...(π β π))π΅) |
120 | 92, 96, 16 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (0...(π β π))) β (πΊβπ) = π΅) |
121 | 120 | sumeq2dv 11375 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (0...(π β π))(πΊβπ) = Ξ£π β (0...(π β π))π΅) |
122 | 119, 121 | eqtr4d 2213 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (0...(((π β π) + 1) β 1))π΅ = Ξ£π β (0...(π β π))(πΊβπ)) |
123 | 122 | oveq1d 5889 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β0) β§ π β (0...π)) β (Ξ£π β (0...(((π β π) + 1) β 1))π΅ + Ξ£π β (β€β₯β((π β π) + 1))π΅) = (Ξ£π β (0...(π β π))(πΊβπ) + Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
124 | 113, 123 | eqtrd 2210 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β β0 π΅ = (Ξ£π β (0...(π β π))(πΊβπ) + Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
125 | 124 | oveq1d 5889 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β (0...π)) β (Ξ£π β β0 π΅ β Ξ£π β (0...(π β π))(πΊβπ)) = ((Ξ£π β (0...(π β π))(πΊβπ) + Ξ£π β (β€β₯β((π β π) + 1))π΅) β Ξ£π β (0...(π β π))(πΊβπ))) |
126 | 109 | nn0zd 9372 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β0) β§ π β (0...π)) β ((π β π) + 1) β β€) |
127 | | simplll 533 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (β€β₯β((π β π) + 1))) β π) |
128 | | eluznn0 9598 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β π) + 1) β β0 β§ π β
(β€β₯β((π β π) + 1))) β π β β0) |
129 | 109, 128 | sylan 283 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (β€β₯β((π β π) + 1))) β π β β0) |
130 | 127, 129,
16 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (β€β₯β((π β π) + 1))) β (πΊβπ) = π΅) |
131 | 127, 129,
17 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β (β€β₯β((π β π) + 1))) β π΅ β β) |
132 | 110, 111 | eqeltrd 2254 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ π β β0) β§ π β (0...π)) β§ π β β0) β (πΊβπ) β β) |
133 | 1, 109, 132 | iserex 11346 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β0) β§ π β (0...π)) β (seq0( + , πΊ) β dom β β seq((π β π) + 1)( + , πΊ) β dom β )) |
134 | 112, 133 | mpbid 147 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β0) β§ π β (0...π)) β seq((π β π) + 1)( + , πΊ) β dom β ) |
135 | 105, 126,
130, 131, 134 | isumcl 11432 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β β0) β§ π β (0...π)) β Ξ£π β (β€β₯β((π β π) + 1))π΅ β β) |
136 | 103, 135 | pncan2d 8269 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β (0...π)) β ((Ξ£π β (0...(π β π))(πΊβπ) + Ξ£π β (β€β₯β((π β π) + 1))π΅) β Ξ£π β (0...(π β π))(πΊβπ)) = Ξ£π β (β€β₯β((π β π) + 1))π΅) |
137 | 125, 136 | eqtrd 2210 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β (Ξ£π β β0 π΅ β Ξ£π β (0...(π β π))(πΊβπ)) = Ξ£π β (β€β₯β((π β π) + 1))π΅) |
138 | 137 | oveq2d 5890 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄ Β· (Ξ£π β β0 π΅ β Ξ£π β (0...(π β π))(πΊβπ))) = (π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
139 | 12, 83 | mulcomd 7978 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β0) β (π΄ Β· Ξ£π β β0
π΅) = (Ξ£π β β0
π΅ Β· π΄)) |
140 | 33 | oveq2d 5890 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β0) β
(Ξ£π β
β0 π΅
Β· (πΉβπ)) = (Ξ£π β β0 π΅ Β· π΄)) |
141 | 139, 140 | eqtr4d 2213 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β β0) β (π΄ Β· Ξ£π β β0
π΅) = (Ξ£π β β0
π΅ Β· (πΉβπ))) |
142 | 79, 81, 141 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄ Β· Ξ£π β β0 π΅) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
143 | 91, 101, 97 | fsummulc2 11455 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄ Β· Ξ£π β (0...(π β π))(πΊβπ)) = Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ))) |
144 | 142, 143 | oveq12d 5892 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β (0...π)) β ((π΄ Β· Ξ£π β β0 π΅) β (π΄ Β· Ξ£π β (0...(π β π))(πΊβπ))) = ((Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ)))) |
145 | 104, 138,
144 | 3eqtr3rd 2219 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β0) β§ π β (0...π)) β ((Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ))) = (π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
146 | 145 | sumeq2dv 11375 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β
Ξ£π β (0...π)((Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ))) = Ξ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
147 | | elnn0uz 9564 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β π β
(β€β₯β0)) |
148 | 147 | biimpri 133 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯β0) β π β β0) |
149 | 82 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β Ξ£π β β0 π΅ β β) |
150 | 148, 84 | sylan2 286 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (β€β₯β0))
β (πΉβπ) β
β) |
151 | 150 | adantlr 477 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β (πΉβπ) β β) |
152 | 149, 151 | mulcld 7977 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β (Ξ£π β β0 π΅ Β· (πΉβπ)) β β) |
153 | | fveq2 5515 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (πΉβπ) = (πΉβπ)) |
154 | 153 | oveq2d 5890 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (Ξ£π β β0 π΅ Β· (πΉβπ)) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
155 | | eqid 2177 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ))) = (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))) |
156 | 154, 155 | fvmptg 5592 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ (Ξ£π β
β0 π΅
Β· (πΉβπ)) β β) β
((π β
β0 β¦ (Ξ£π β β0 π΅ Β· (πΉβπ)))βπ) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
157 | 148, 152,
156 | syl2an2 594 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β ((π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ)))βπ) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
158 | | simpr 110 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β π β
β0) |
159 | 158, 1 | eleqtrdi 2270 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β π β
(β€β₯β0)) |
160 | 157, 159,
152 | fsum3ser 11404 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β
Ξ£π β (0...π)(Ξ£π β β0 π΅ Β· (πΉβπ)) = (seq0( + , (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ)) |
161 | | fveq2 5515 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (πΊβπ) = (πΊβπ)) |
162 | 161 | oveq2d 5890 |
. . . . . . . . . . . . . . 15
β’ (π = π β (π΄ Β· (πΊβπ)) = (π΄ Β· (πΊβπ))) |
163 | | fveq2 5515 |
. . . . . . . . . . . . . . . 16
β’ (π = (π β π) β (πΊβπ) = (πΊβ(π β π))) |
164 | 163 | oveq2d 5890 |
. . . . . . . . . . . . . . 15
β’ (π = (π β π) β (π΄ Β· (πΊβπ)) = (π΄ Β· (πΊβ(π β π)))) |
165 | 98 | anasss 399 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ (π β (0...π) β§ π β (0...(π β π)))) β (π΄ Β· (πΊβπ)) β β) |
166 | 162, 164,
165, 77 | fisum0diag2 11454 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β
Ξ£π β (0...π)Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ)) = Ξ£π β (0...π)Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π)))) |
167 | | simpll 527 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β π) |
168 | | elnn0uz 9564 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β0
β π β
(β€β₯β0)) |
169 | 168 | biimpri 133 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(β€β₯β0) β π β β0) |
170 | 169 | adantl 277 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β π β β0) |
171 | 167, 170,
5 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β (π»βπ) = Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π)))) |
172 | 167, 170,
29 | syl2anc 411 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β0) β§ π β
(β€β₯β0)) β Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π))) β β) |
173 | 171, 159,
172 | fsum3ser 11404 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β
Ξ£π β (0...π)Ξ£π β (0...π)(π΄ Β· (πΊβ(π β π))) = (seq0( + , π»)βπ)) |
174 | 166, 173 | eqtrd 2210 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β
Ξ£π β (0...π)Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ)) = (seq0( + , π»)βπ)) |
175 | 160, 174 | oveq12d 5892 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β
(Ξ£π β (0...π)(Ξ£π β β0 π΅ Β· (πΉβπ)) β Ξ£π β (0...π)Ξ£π β (0...(π β π))(π΄ Β· (πΊβπ))) = ((seq0( + , (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) |
176 | 100, 146,
175 | 3eqtr3rd 2219 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β ((seq0( +
, (π β
β0 β¦ (Ξ£π β β0 π΅ Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ)) = Ξ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) |
177 | 176 | fveq2d 5519 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β
(absβ((seq0( + , (π
β β0 β¦ (Ξ£π β β0 π΅ Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) = (absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅))) |
178 | 177 | breq1d 4013 |
. . . . . . . . 9
β’ ((π β§ π β β0) β
((absβ((seq0( + , (π
β β0 β¦ (Ξ£π β β0 π΅ Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β (absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
179 | 74, 178 | sylan2 286 |
. . . . . . . 8
β’ ((π β§ (π¦ β β0 β§ π β
(β€β₯βπ¦))) β ((absβ((seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β (absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
180 | 179 | anassrs 400 |
. . . . . . 7
β’ (((π β§ π¦ β β0) β§ π β
(β€β₯βπ¦)) β ((absβ((seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β (absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
181 | 180 | ralbidva 2473 |
. . . . . 6
β’ ((π β§ π¦ β β0) β
(βπ β
(β€β₯βπ¦)(absβ((seq0( + , (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β βπ β (β€β₯βπ¦)(absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
182 | 181 | rexbidva 2474 |
. . . . 5
β’ (π β (βπ¦ β β0 βπ β
(β€β₯βπ¦)(absβ((seq0( + , (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β βπ¦ β β0 βπ β
(β€β₯βπ¦)(absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
183 | 182 | adantr 276 |
. . . 4
β’ ((π β§ π₯ β β+) β
(βπ¦ β
β0 βπ β (β€β₯βπ¦)(absβ((seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯ β βπ¦ β β0 βπ β
(β€β₯βπ¦)(absβΞ£π β (0...π)(π΄ Β· Ξ£π β (β€β₯β((π β π) + 1))π΅)) < π₯)) |
184 | 73, 183 | mpbird 167 |
. . 3
β’ ((π β§ π₯ β β+) β
βπ¦ β
β0 βπ β (β€β₯βπ¦)(absβ((seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯) |
185 | 184 | ralrimiva 2550 |
. 2
β’ (π β βπ₯ β β+ βπ¦ β β0
βπ β
(β€β₯βπ¦)(absβ((seq0( + , (π β β0 β¦
(Ξ£π β
β0 π΅
Β· (πΉβπ))))βπ) β (seq0( + , π»)βπ))) < π₯) |
186 | | mertens.f |
. . . . 5
β’ (π β seq0( + , πΉ) β dom β
) |
187 | 1, 2, 33, 12, 186 | isumclim2 11429 |
. . . 4
β’ (π β seq0( + , πΉ) β Ξ£π β β0
π΄) |
188 | 84 | ralrimiva 2550 |
. . . . 5
β’ (π β βπ β β0 (πΉβπ) β β) |
189 | | fveq2 5515 |
. . . . . . 7
β’ (π = π β (πΉβπ) = (πΉβπ)) |
190 | 189 | eleq1d 2246 |
. . . . . 6
β’ (π = π β ((πΉβπ) β β β (πΉβπ) β β)) |
191 | 190 | rspccva 2840 |
. . . . 5
β’
((βπ β
β0 (πΉβπ) β β β§ π β β0) β (πΉβπ) β β) |
192 | 188, 191 | sylan 283 |
. . . 4
β’ ((π β§ π β β0) β (πΉβπ) β β) |
193 | 82 | adantr 276 |
. . . . . 6
β’ ((π β§ π β β0) β
Ξ£π β
β0 π΅
β β) |
194 | 193, 192 | mulcld 7977 |
. . . . 5
β’ ((π β§ π β β0) β
(Ξ£π β
β0 π΅
Β· (πΉβπ)) β
β) |
195 | | fveq2 5515 |
. . . . . . 7
β’ (π = π β (πΉβπ) = (πΉβπ)) |
196 | 195 | oveq2d 5890 |
. . . . . 6
β’ (π = π β (Ξ£π β β0 π΅ Β· (πΉβπ)) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
197 | 196, 155 | fvmptg 5592 |
. . . . 5
β’ ((π β β0
β§ (Ξ£π β
β0 π΅
Β· (πΉβπ)) β β) β
((π β
β0 β¦ (Ξ£π β β0 π΅ Β· (πΉβπ)))βπ) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
198 | 158, 194,
197 | syl2anc 411 |
. . . 4
β’ ((π β§ π β β0) β ((π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ)))βπ) = (Ξ£π β β0 π΅ Β· (πΉβπ))) |
199 | 1, 2, 82, 187, 192, 198 | isermulc2 11347 |
. . 3
β’ (π β seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ)))) β (Ξ£π β β0
π΅ Β· Ξ£π β β0
π΄)) |
200 | 1, 2, 33, 12, 186 | isumcl 11432 |
. . . 4
β’ (π β Ξ£π β β0 π΄ β β) |
201 | 82, 200 | mulcomd 7978 |
. . 3
β’ (π β (Ξ£π β β0 π΅ Β· Ξ£π β β0 π΄) = (Ξ£π β β0 π΄ Β· Ξ£π β β0 π΅)) |
202 | 199, 201 | breqtrd 4029 |
. 2
β’ (π β seq0( + , (π β β0
β¦ (Ξ£π β
β0 π΅
Β· (πΉβπ)))) β (Ξ£π β β0
π΄ Β· Ξ£π β β0
π΅)) |
203 | 1, 2, 4, 32, 185, 202 | 2clim 11308 |
1
β’ (π β seq0( + , π») β (Ξ£π β β0
π΄ Β· Ξ£π β β0
π΅)) |