Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertensabs GIF version

Theorem mertensabs 11427
 Description: Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then (Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.f (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
mertensabs (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
Distinct variable groups:   𝐵,𝑗   𝑗,𝑘,𝐺   𝜑,𝑗,𝑘   𝐴,𝑘   𝑗,𝐾,𝑘   𝑗,𝐹   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐹(𝑘)   𝐻(𝑗)

Proof of Theorem mertensabs
Dummy variables 𝑚 𝑛 𝑠 𝑥 𝑦 𝑧 𝑖 𝑙 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9467 . 2 0 = (ℤ‘0)
2 0zd 9173 . 2 (𝜑 → 0 ∈ ℤ)
3 seqex 10339 . . 3 seq0( + , 𝐻) ∈ V
43a1i 9 . 2 (𝜑 → seq0( + , 𝐻) ∈ V)
5 mertens.6 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
6 0zd 9173 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℤ)
7 nn0z 9181 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
87adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
96, 8fzfigd 10323 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
10 simpl 108 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝜑)
11 elfznn0 10009 . . . . . . . 8 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
12 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1310, 11, 12syl2an 287 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
14 fveq2 5467 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → (𝐺𝑖) = (𝐺‘(𝑘𝑗)))
1514eleq1d 2226 . . . . . . . 8 (𝑖 = (𝑘𝑗) → ((𝐺𝑖) ∈ ℂ ↔ (𝐺‘(𝑘𝑗)) ∈ ℂ))
16 mertens.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
17 mertens.5 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
1816, 17eqeltrd 2234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1918ralrimiva 2530 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺𝑘) ∈ ℂ)
20 fveq2 5467 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
2120eleq1d 2226 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑖) ∈ ℂ))
2221cbvralv 2680 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝐺𝑘) ∈ ℂ ↔ ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
2319, 22sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
2423ad2antrr 480 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
25 fznn0sub 9952 . . . . . . . . 9 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
2625adantl 275 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
2715, 24, 26rspcdva 2821 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
2813, 27mulcld 7892 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
299, 28fsumcl 11290 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
305, 29eqeltrd 2234 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
311, 2, 30serf 10366 . . 3 (𝜑 → seq0( + , 𝐻):ℕ0⟶ℂ)
3231ffvelrnda 5601 . 2 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐻)‘𝑚) ∈ ℂ)
33 mertens.1 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
3433adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
35 mertens.2 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
3635adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
3712adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3816adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
3917adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
405adantlr 469 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
41 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
4241adantr 274 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → seq0( + , 𝐾) ∈ dom ⇝ )
43 mertens.8 . . . . . 6 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
4443adantr 274 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → seq0( + , 𝐺) ∈ dom ⇝ )
45 simpr 109 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
46 fveq2 5467 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝐺𝑙) = (𝐺𝑘))
4746cbvsumv 11251 . . . . . . . . . . 11 Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙) = Σ𝑘 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑘)
48 fvoveq1 5844 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (ℤ‘(𝑖 + 1)) = (ℤ‘(𝑛 + 1)))
4948sumeq1d 11256 . . . . . . . . . . 11 (𝑖 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
5047, 49syl5eq 2202 . . . . . . . . . 10 (𝑖 = 𝑛 → Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
5150fveq2d 5471 . . . . . . . . 9 (𝑖 = 𝑛 → (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5251eqeq2d 2169 . . . . . . . 8 (𝑖 = 𝑛 → (𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ 𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5352cbvrexv 2681 . . . . . . 7 (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
54 eqeq1 2164 . . . . . . . 8 (𝑢 = 𝑧 → (𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5554rexbidv 2458 . . . . . . 7 (𝑢 = 𝑧 → (∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5653, 55syl5bb 191 . . . . . 6 (𝑢 = 𝑧 → (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5756cbvabv 2282 . . . . 5 {𝑢 ∣ ∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
58 fveq2 5467 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐾𝑖) = (𝐾𝑗))
5958cbvsumv 11251 . . . . . . . . . . 11 Σ𝑖 ∈ ℕ0 (𝐾𝑖) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
6059oveq1i 5831 . . . . . . . . . 10 𝑖 ∈ ℕ0 (𝐾𝑖) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
6160oveq2i 5832 . . . . . . . . 9 ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) = ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
6261breq2i 3973 . . . . . . . 8 ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ (abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
63 fveq2 5467 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐺𝑖) = (𝐺𝑘))
6463cbvsumv 11251 . . . . . . . . . . 11 Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖) = Σ𝑘 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑘)
65 fvoveq1 5844 . . . . . . . . . . . 12 (𝑢 = 𝑛 → (ℤ‘(𝑢 + 1)) = (ℤ‘(𝑛 + 1)))
6665sumeq1d 11256 . . . . . . . . . . 11 (𝑢 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
6764, 66syl5eq 2202 . . . . . . . . . 10 (𝑢 = 𝑛 → Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
6867fveq2d 5471 . . . . . . . . 9 (𝑢 = 𝑛 → (abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
6968breq1d 3975 . . . . . . . 8 (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7062, 69syl5bb 191 . . . . . . 7 (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7170cbvralv 2680 . . . . . 6 (∀𝑢 ∈ (ℤ𝑠)(abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
7271anbi2i 453 . . . . 5 ((𝑠 ∈ ℕ ∧ ∀𝑢 ∈ (ℤ𝑠)(abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1))) ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7334, 36, 37, 38, 39, 40, 42, 44, 45, 57, 72mertenslem2 11426 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥)
74 eluznn0 9503 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)) → 𝑚 ∈ ℕ0)
75 0zd 9173 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → 0 ∈ ℤ)
76 nn0z 9181 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
7776adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
7875, 77fzfigd 10323 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
79 simpll 519 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
80 elfznn0 10009 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
8180adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℕ0)
821, 2, 16, 17, 43isumcl 11315 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
8382adantr 274 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
8433, 12eqeltrd 2234 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) ∈ ℂ)
8583, 84mulcld 7892 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ)
8679, 81, 85syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ)
87 0zd 9173 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 0 ∈ ℤ)
8877adantr 274 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑚 ∈ ℤ)
8981nn0zd 9278 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℤ)
9088, 89zsubcld 9285 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℤ)
9187, 90fzfigd 10323 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(𝑚𝑗)) ∈ Fin)
92 simplll 523 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝜑)
9380ad2antlr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝑗 ∈ ℕ0)
9492, 93, 12syl2anc 409 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝐴 ∈ ℂ)
95 elfznn0 10009 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑚𝑗)) → 𝑘 ∈ ℕ0)
9695adantl 275 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝑘 ∈ ℕ0)
9792, 96, 18syl2anc 409 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐺𝑘) ∈ ℂ)
9894, 97mulcld 7892 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐴 · (𝐺𝑘)) ∈ ℂ)
9991, 98fsumcl 11290 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) ∈ ℂ)
10078, 86, 99fsumsub 11342 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))))
10179, 81, 12syl2anc 409 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
10282ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
10391, 97fsumcl 11290 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) ∈ ℂ)
104101, 102, 103subdid 8283 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))))
105 eqid 2157 . . . . . . . . . . . . . . . . . . 19 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
106 fznn0sub 9952 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
107106adantl 275 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
108 peano2nn0 9124 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
109107, 108syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
11079, 16sylan 281 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
11179, 17sylan 281 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
11243ad2antrr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
1131, 105, 109, 110, 111, 112isumsplit 11381 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
114107nn0cnd 9139 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℂ)
115 ax-1cn 7819 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
116 pncan 8075 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚𝑗) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑚𝑗) + 1) − 1) = (𝑚𝑗))
117114, 115, 116sylancl 410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (((𝑚𝑗) + 1) − 1) = (𝑚𝑗))
118117oveq2d 5837 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(((𝑚𝑗) + 1) − 1)) = (0...(𝑚𝑗)))
119118sumeq1d 11256 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚𝑗))𝐵)
12092, 96, 16syl2anc 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐺𝑘) = 𝐵)
121120sumeq2dv 11258 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) = Σ𝑘 ∈ (0...(𝑚𝑗))𝐵)
122119, 121eqtr4d 2193 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))
123122oveq1d 5836 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
124113, 123eqtrd 2190 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
125124oveq1d 5836 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = ((Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)))
126109nn0zd 9278 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
127 simplll 523 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
128 eluznn0 9503 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
129109, 128sylan 281 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
130127, 129, 16syl2anc 409 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
131127, 129, 17syl2anc 409 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
132110, 111eqeltrd 2234 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1331, 109, 132iserex 11229 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
134112, 133mpbid 146 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
135105, 126, 130, 131, 134isumcl 11315 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
136103, 135pncan2d 8182 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
137125, 136eqtrd 2190 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
138137oveq2d 5837 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
13912, 83mulcomd 7893 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴))
14033oveq2d 5837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴))
141139, 140eqtr4d 2193 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
14279, 81, 141syl2anc 409 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
14391, 101, 97fsummulc2 11338 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)))
144142, 143oveq12d 5839 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))))
145104, 138, 1443eqtr3rd 2199 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
146145sumeq2dv 11258 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
147 elnn0uz 9470 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
148147biimpri 132 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘0) → 𝑗 ∈ ℕ0)
14982ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (ℤ‘0)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
150148, 84sylan2 284 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ‘0)) → (𝐹𝑗) ∈ ℂ)
151150adantlr 469 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (ℤ‘0)) → (𝐹𝑗) ∈ ℂ)
152149, 151mulcld 7892 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (ℤ‘0)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ)
153 fveq2 5467 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
154153oveq2d 5837 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
155 eqid 2157 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))) = (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))
156154, 155fvmptg 5543 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0 ∧ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
157148, 152, 156syl2an2 584 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
158 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
159158, 1eleqtrdi 2250 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
160157, 159, 152fsum3ser 11287 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚))
161 fveq2 5467 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
162161oveq2d 5837 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐴 · (𝐺𝑛)) = (𝐴 · (𝐺𝑘)))
163 fveq2 5467 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘𝑗) → (𝐺𝑛) = (𝐺‘(𝑘𝑗)))
164163oveq2d 5837 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘𝑗) → (𝐴 · (𝐺𝑛)) = (𝐴 · (𝐺‘(𝑘𝑗))))
16598anasss 397 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑗 ∈ (0...𝑚) ∧ 𝑘 ∈ (0...(𝑚𝑗)))) → (𝐴 · (𝐺𝑘)) ∈ ℂ)
166162, 164, 165, 77fisum0diag2 11337 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) = Σ𝑘 ∈ (0...𝑚𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
167 simpll 519 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝜑)
168 elnn0uz 9470 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
169168biimpri 132 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
170169adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
171167, 170, 5syl2anc 409 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
172167, 170, 29syl2anc 409 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
173171, 159, 172fsum3ser 11287 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑚𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) = (seq0( + , 𝐻)‘𝑚))
174166, 173eqtrd 2190 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) = (seq0( + , 𝐻)‘𝑚))
175160, 174oveq12d 5839 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)))
176100, 146, 1753eqtr3rd 2199 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
177176fveq2d 5471 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) = (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
178177breq1d 3975 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
17974, 178sylan2 284 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦))) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
180179anassrs 398 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑦)) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
181180ralbidva 2453 . . . . . 6 ((𝜑𝑦 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
182181rexbidva 2454 . . . . 5 (𝜑 → (∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
183182adantr 274 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
18473, 183mpbird 166 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥)
185184ralrimiva 2530 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥)
186 mertens.f . . . . 5 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
1871, 2, 33, 12, 186isumclim2 11312 . . . 4 (𝜑 → seq0( + , 𝐹) ⇝ Σ𝑗 ∈ ℕ0 𝐴)
18884ralrimiva 2530 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 (𝐹𝑗) ∈ ℂ)
189 fveq2 5467 . . . . . . 7 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
190189eleq1d 2226 . . . . . 6 (𝑗 = 𝑚 → ((𝐹𝑗) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
191190rspccva 2815 . . . . 5 ((∀𝑗 ∈ ℕ0 (𝐹𝑗) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
192188, 191sylan 281 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
19382adantr 274 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
194193, 192mulcld 7892 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)) ∈ ℂ)
195 fveq2 5467 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
196195oveq2d 5837 . . . . . 6 (𝑛 = 𝑚 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
197196, 155fvmptg 5543 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
198158, 194, 197syl2anc 409 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
1991, 2, 82, 187, 192, 198isermulc2 11230 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))) ⇝ (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴))
2001, 2, 33, 12, 186isumcl 11315 . . . 4 (𝜑 → Σ𝑗 ∈ ℕ0 𝐴 ∈ ℂ)
20182, 200mulcomd 7893 . . 3 (𝜑 → (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴) = (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
202199, 201breqtrd 3990 . 2 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
2031, 2, 4, 32, 185, 2022clim 11191 1 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128  {cab 2143  ∀wral 2435  ∃wrex 2436  Vcvv 2712   class class class wbr 3965   ↦ cmpt 4025  dom cdm 4585  ‘cfv 5169  (class class class)co 5821  ℂcc 7724  0cc0 7726  1c1 7727   + caddc 7729   · cmul 7731   < clt 7906   − cmin 8040   / cdiv 8539  ℕcn 8827  2c2 8878  ℕ0cn0 9084  ℤcz 9161  ℤ≥cuz 9433  ℝ+crp 9553  ...cfz 9905  seqcseq 10337  abscabs 10890   ⇝ cli 11168  Σcsu 11243 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-disj 3943  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-ico 9791  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-sumdc 11244 This theorem is referenced by:  efaddlem  11564
 Copyright terms: Public domain W3C validator