| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzp1m1 | GIF version | ||
| Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzp1m1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 9484 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 2 | 1 | ad2antrl 490 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑁 − 1) ∈ ℤ) |
| 3 | zre 9450 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 4 | zre 9450 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | 1re 8145 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 6 | leaddsub 8585 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 7 | 5, 6 | mp3an2 1359 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 8 | 3, 4, 7 | syl2an 289 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 9 | 8 | biimpa 296 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 1)) |
| 10 | 9 | anasss 399 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑁 − 1)) |
| 11 | 2, 10 | jca 306 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))) |
| 12 | 11 | ex 115 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))) |
| 13 | peano2z 9482 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
| 14 | eluz1 9726 | . . . 4 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))) |
| 16 | eluz1 9726 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))) | |
| 17 | 12, 15, 16 | 3imtr4d 203 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
| 18 | 17 | imp 124 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6001 ℝcr 7998 1c1 8000 + caddc 8002 ≤ cle 8182 − cmin 8317 ℤcz 9446 ℤ≥cuz 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 |
| This theorem is referenced by: peano2uzr 9780 fzosplitsnm1 10415 fzofzp1b 10434 seq3m1 10695 monoord 10707 seqf1oglem2 10742 seq3id 10747 seq3z 10750 serf0 11863 fsumm1 11927 telfsumo 11977 fsumparts 11981 isumsplit 12002 fprodm1 12109 pockthlem 12879 ennnfonelemjn 12973 |
| Copyright terms: Public domain | W3C validator |