| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addge1 | GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| nn0addge1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9334 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | nn0ge0 9350 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) |
| 4 | addge01 8575 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ 𝐴 ≤ (𝐴 + 𝑁))) | |
| 5 | 4 | biimp3a 1358 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → 𝐴 ≤ (𝐴 + 𝑁)) |
| 6 | 5 | 3expb 1207 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → 𝐴 ≤ (𝐴 + 𝑁)) |
| 7 | 3, 6 | sylan2 286 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4054 (class class class)co 5962 ℝcr 7954 0cc0 7955 + caddc 7958 ≤ cle 8138 ℕ0cn0 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-xp 4694 df-cnv 4696 df-iota 5246 df-fv 5293 df-ov 5965 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-inn 9067 df-n0 9326 |
| This theorem is referenced by: nn0addge1i 9373 fzctr 10285 elincfzoext 10354 nn0opthlem2d 10898 pcaddlem 12747 4sqexercise2 12807 4sqlemsdc 12808 mplsubgfilemcl 14546 |
| Copyright terms: Public domain | W3C validator |