ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdiv GIF version

Theorem prmdiv 12098
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 12007 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
213ad2ant1 1003 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑃 ∥ 1)
3 prmz 11979 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1003 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
5 simp2 983 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 phiprm 12086 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
763ad2ant1 1003 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
8 prmnn 11978 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
983ad2ant1 1003 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
10 nnm1nn0 9125 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
119, 10syl 14 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
127, 11eqeltrd 2234 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
13 zexpcl 10427 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
145, 12, 13syl2anc 409 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
15 1z 9187 . . . . . . . . . 10 1 ∈ ℤ
16 zsubcl 9202 . . . . . . . . . 10 (((𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
1714, 15, 16sylancl 410 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
18 prmuz2 11998 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant1 1003 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
20 uznn0sub 9464 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
2119, 20syl 14 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
22 zexpcl 10427 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
235, 21, 22syl2anc 409 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
24 znq 9526 . . . . . . . . . . . . 13 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℚ)
2523, 9, 24syl2anc 409 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℚ)
2625flqcld 10169 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℤ)
275, 26zmulcld 9286 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
284, 27zmulcld 9286 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ)
295, 4gcdcomd 11849 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
30 coprm 12009 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
3130biimp3a 1327 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
3229, 31eqtrd 2190 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
33 eulerth 12096 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
349, 5, 32, 33syl3anc 1220 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
35 1zzd 9188 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
36 moddvds 11688 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
379, 14, 35, 36syl3anc 1220 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
3834, 37mpbid 146 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
39 dvdsmul1 11701 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
404, 27, 39syl2anc 409 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
414, 17, 28, 38, 40dvds2subd 11715 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
425zcnd 9281 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
4323zcnd 9281 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℂ)
444, 26zmulcld 9286 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
4544zcnd 9281 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℂ)
4642, 43, 45subdid 8283 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
47 prmdiv.1 . . . . . . . . . . . . 13 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
48 zq 9528 . . . . . . . . . . . . . . 15 ((𝐴↑(𝑃 − 2)) ∈ ℤ → (𝐴↑(𝑃 − 2)) ∈ ℚ)
4923, 48syl 14 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℚ)
50 nnq 9535 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
519, 50syl 14 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℚ)
529nngt0d 8871 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 0 < 𝑃)
53 modqval 10216 . . . . . . . . . . . . . 14 (((𝐴↑(𝑃 − 2)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5449, 51, 52, 53syl3anc 1220 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5547, 54syl5eq 2202 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5655oveq2d 5837 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
57 2m1e1 8945 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
5857oveq2i 5832 . . . . . . . . . . . . . . . 16 (𝑃 − (2 − 1)) = (𝑃 − 1)
597, 58eqtr4di 2208 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − (2 − 1)))
609nncnd 8841 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℂ)
61 2cnd 8900 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
62 1cnd 7888 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
6360, 61, 62subsubd 8208 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
6459, 63eqtrd 2190 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = ((𝑃 − 2) + 1))
6564oveq2d 5837 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑((𝑃 − 2) + 1)))
6642, 21expp1d 10545 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
6743, 42mulcomd 7893 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) · 𝐴) = (𝐴 · (𝐴↑(𝑃 − 2))))
6865, 66, 673eqtrd 2194 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴 · (𝐴↑(𝑃 − 2))))
6926zcnd 9281 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℂ)
7060, 42, 69mul12d 8021 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) = (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
7168, 70oveq12d 5839 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7246, 56, 713eqtr4d 2200 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7372oveq1d 5836 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1))
7414zcnd 9281 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℂ)
7528zcnd 9281 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℂ)
7674, 75, 62sub32d 8212 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7773, 76eqtrd 2190 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7841, 77breqtrrd 3992 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
79 oveq2 5829 . . . . . . . . 9 (𝑅 = 0 → (𝐴 · 𝑅) = (𝐴 · 0))
8079oveq1d 5836 . . . . . . . 8 (𝑅 = 0 → ((𝐴 · 𝑅) − 1) = ((𝐴 · 0) − 1))
8180breq2d 3977 . . . . . . 7 (𝑅 = 0 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) ↔ 𝑃 ∥ ((𝐴 · 0) − 1)))
8278, 81syl5ibcom 154 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ ((𝐴 · 0) − 1)))
8342mul01d 8262 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 0) = 0)
8483oveq1d 5836 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = (0 − 1))
85 df-neg 8043 . . . . . . . . 9 -1 = (0 − 1)
8684, 85eqtr4di 2208 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = -1)
8786breq2d 3977 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ -1))
88 dvdsnegb 11696 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
894, 15, 88sylancl 410 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
9087, 89bitr4d 190 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ 1))
9182, 90sylibd 148 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ 1))
922, 91mtod 653 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑅 = 0)
93 zmodfz 10238 . . . . . . . 8 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9423, 9, 93syl2anc 409 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9547, 94eqeltrid 2244 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (0...(𝑃 − 1)))
96 nn0uz 9467 . . . . . . . 8 0 = (ℤ‘0)
9711, 96eleqtrdi 2250 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ (ℤ‘0))
98 elfzp12 9994 . . . . . . 7 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9997, 98syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
10095, 99mpbid 146 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
101100ord 714 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
10292, 101mpd 13 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
103 1e0p1 9330 . . . 4 1 = (0 + 1)
104103oveq1i 5831 . . 3 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
105102, 104eleqtrrdi 2251 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (1...(𝑃 − 1)))
106105, 78jca 304 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1335  wcel 2128   class class class wbr 3965  cfv 5169  (class class class)co 5821  0cc0 7726  1c1 7727   + caddc 7729   · cmul 7731   < clt 7906  cmin 8040  -cneg 8041   / cdiv 8539  cn 8827  2c2 8878  0cn0 9084  cz 9161  cuz 9433  cq 9521  ...cfz 9905  cfl 10160   mod cmo 10214  cexp 10411  cdvds 11676   gcd cgcd 11821  cprime 11975  ϕcphi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-2o 6361  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441  df-dvds 11677  df-gcd 11822  df-prm 11976  df-phi 12074
This theorem is referenced by:  prmdiveq  12099  prmdivdiv  12100
  Copyright terms: Public domain W3C validator