ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzp1p1 GIF version

Theorem eluzp1p1 9748
Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
Assertion
Ref Expression
eluzp1p1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))

Proof of Theorem eluzp1p1
StepHypRef Expression
1 peano2z 9482 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
213ad2ant1 1042 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 + 1) ∈ ℤ)
3 peano2z 9482 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
433ad2ant2 1043 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 + 1) ∈ ℤ)
5 zre 9450 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 9450 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 1re 8145 . . . . . 6 1 ∈ ℝ
8 leadd1 8577 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8mp3an3 1360 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
105, 6, 9syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
1110biimp3a 1379 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 + 1) ≤ (𝑁 + 1))
122, 4, 113jca 1201 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1)))
13 eluz2 9728 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
14 eluz2 9728 . 2 ((𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1)))
1512, 13, 143imtr4i 201 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6001  cr 7998  1c1 8000   + caddc 8002  cle 8182  cz 9446  cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  uzp1  9756  fzp1elp1  10271  rebtwn2z  10474  seqvalcd  10683  seqovcd  10689  seqp1cd  10692  seq3fveq2  10697  seqfveq2g  10699  seqf1oglem2  10742  seq3id2  10748  seq3coll  11064  serf0  11863  efcllemp  12169  prmind2  12642  pockthlem  12879  pockthg  12880  prmunb  12885  cvgcmp2nlemabs  16400
  Copyright terms: Public domain W3C validator