| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzp1p1 | GIF version | ||
| Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluzp1p1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z 9379 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
| 2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 + 1) ∈ ℤ) |
| 3 | peano2z 9379 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 4 | 3 | 3ad2ant2 1021 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 5 | zre 9347 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 6 | zre 9347 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 7 | 1re 8042 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 8 | leadd1 8474 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
| 9 | 7, 8 | mp3an3 1337 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 10 | 5, 6, 9 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 11 | 10 | biimp3a 1356 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑁 + 1)) |
| 12 | 2, 4, 11 | 3jca 1179 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 13 | eluz2 9624 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 14 | eluz2 9624 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1))) | |
| 15 | 12, 13, 14 | 3imtr4i 201 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 ≤ cle 8079 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: uzp1 9652 fzp1elp1 10167 rebtwn2z 10361 seqvalcd 10570 seqovcd 10576 seqp1cd 10579 seq3fveq2 10584 seqfveq2g 10586 seqf1oglem2 10629 seq3id2 10635 seq3coll 10951 serf0 11534 efcllemp 11840 prmind2 12313 pockthlem 12550 pockthg 12551 prmunb 12556 cvgcmp2nlemabs 15763 |
| Copyright terms: Public domain | W3C validator |