ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap GIF version

Theorem div2subap 8608
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 7973 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 subcl 7973 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
323adant3 1001 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) ∈ ℂ)
4 apneg 8385 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 # 𝐷 ↔ -𝐶 # -𝐷))
54biimp3a 1323 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 # -𝐷)
6 simp1 981 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐶 ∈ ℂ)
76negcld 8072 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 ∈ ℂ)
8 simp2 982 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐷 ∈ ℂ)
98negcld 8072 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐷 ∈ ℂ)
10 apadd2 8383 . . . . . . . 8 ((-𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
117, 9, 6, 10syl3anc 1216 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
125, 11mpbid 146 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) # (𝐶 + -𝐷))
136negidd 8075 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) = 0)
146, 8negsubd 8091 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐷) = (𝐶𝐷))
1512, 13, 143brtr3d 3959 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 # (𝐶𝐷))
16 0cnd 7771 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 ∈ ℂ)
17 apsym 8380 . . . . . 6 ((0 ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1816, 3, 17syl2anc 408 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1915, 18mpbid 146 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) # 0)
203, 19jca 304 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0))
21 div2negap 8507 . . . 4 (((𝐴𝐵) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
22213expb 1182 . . 3 (((𝐴𝐵) ∈ ℂ ∧ ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
231, 20, 22syl2an 287 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
24 negsubdi2 8033 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
25 negsubdi2 8033 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶𝐷) = (𝐷𝐶))
26253adant3 1001 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -(𝐶𝐷) = (𝐷𝐶))
2724, 26oveqan12d 5793 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
2823, 27eqtr3d 2174 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7630  0cc0 7632   + caddc 7635  cmin 7945  -cneg 7946   # cap 8355   / cdiv 8444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445
This theorem is referenced by:  div2subapd  8609
  Copyright terms: Public domain W3C validator