Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap GIF version

Theorem div2subap 8399
 Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 7778 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 subcl 7778 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
323adant3 966 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) ∈ ℂ)
4 apneg 8185 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 # 𝐷 ↔ -𝐶 # -𝐷))
54biimp3a 1288 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 # -𝐷)
6 simp1 946 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐶 ∈ ℂ)
76negcld 7877 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 ∈ ℂ)
8 simp2 947 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐷 ∈ ℂ)
98negcld 7877 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐷 ∈ ℂ)
10 apadd2 8183 . . . . . . . 8 ((-𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
117, 9, 6, 10syl3anc 1181 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
125, 11mpbid 146 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) # (𝐶 + -𝐷))
136negidd 7880 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) = 0)
146, 8negsubd 7896 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐷) = (𝐶𝐷))
1512, 13, 143brtr3d 3896 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 # (𝐶𝐷))
16 0cnd 7578 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 ∈ ℂ)
17 apsym 8180 . . . . . 6 ((0 ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1816, 3, 17syl2anc 404 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1915, 18mpbid 146 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) # 0)
203, 19jca 301 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0))
21 div2negap 8299 . . . 4 (((𝐴𝐵) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
22213expb 1147 . . 3 (((𝐴𝐵) ∈ ℂ ∧ ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
231, 20, 22syl2an 284 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
24 negsubdi2 7838 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
25 negsubdi2 7838 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶𝐷) = (𝐷𝐶))
26253adant3 966 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -(𝐶𝐷) = (𝐷𝐶))
2724, 26oveqan12d 5709 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
2823, 27eqtr3d 2129 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 927   = wceq 1296   ∈ wcel 1445   class class class wbr 3867  (class class class)co 5690  ℂcc 7445  0cc0 7447   + caddc 7450   − cmin 7750  -cneg 7751   # cap 8155   / cdiv 8236 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560 This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237 This theorem is referenced by:  div2subapd  8400
 Copyright terms: Public domain W3C validator