ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap GIF version

Theorem div2subap 8917
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8278 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 subcl 8278 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
323adant3 1020 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) ∈ ℂ)
4 apneg 8691 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 # 𝐷 ↔ -𝐶 # -𝐷))
54biimp3a 1358 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 # -𝐷)
6 simp1 1000 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐶 ∈ ℂ)
76negcld 8377 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 ∈ ℂ)
8 simp2 1001 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐷 ∈ ℂ)
98negcld 8377 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐷 ∈ ℂ)
10 apadd2 8689 . . . . . . . 8 ((-𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
117, 9, 6, 10syl3anc 1250 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
125, 11mpbid 147 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) # (𝐶 + -𝐷))
136negidd 8380 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) = 0)
146, 8negsubd 8396 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐷) = (𝐶𝐷))
1512, 13, 143brtr3d 4078 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 # (𝐶𝐷))
16 0cnd 8072 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 ∈ ℂ)
17 apsym 8686 . . . . . 6 ((0 ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1816, 3, 17syl2anc 411 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1915, 18mpbid 147 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) # 0)
203, 19jca 306 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0))
21 div2negap 8815 . . . 4 (((𝐴𝐵) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
22213expb 1207 . . 3 (((𝐴𝐵) ∈ ℂ ∧ ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
231, 20, 22syl2an 289 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
24 negsubdi2 8338 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
25 negsubdi2 8338 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶𝐷) = (𝐷𝐶))
26253adant3 1020 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -(𝐶𝐷) = (𝐷𝐶))
2724, 26oveqan12d 5970 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
2823, 27eqtr3d 2241 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930  0cc0 7932   + caddc 7935  cmin 8250  -cneg 8251   # cap 8661   / cdiv 8752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753
This theorem is referenced by:  div2subapd  8918
  Copyright terms: Public domain W3C validator