ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap GIF version

Theorem div2subap 8793
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8155 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 subcl 8155 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
323adant3 1017 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) ∈ ℂ)
4 apneg 8567 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 # 𝐷 ↔ -𝐶 # -𝐷))
54biimp3a 1345 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 # -𝐷)
6 simp1 997 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐶 ∈ ℂ)
76negcld 8254 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐶 ∈ ℂ)
8 simp2 998 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 𝐷 ∈ ℂ)
98negcld 8254 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -𝐷 ∈ ℂ)
10 apadd2 8565 . . . . . . . 8 ((-𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
117, 9, 6, 10syl3anc 1238 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (-𝐶 # -𝐷 ↔ (𝐶 + -𝐶) # (𝐶 + -𝐷)))
125, 11mpbid 147 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) # (𝐶 + -𝐷))
136negidd 8257 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐶) = 0)
146, 8negsubd 8273 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶 + -𝐷) = (𝐶𝐷))
1512, 13, 143brtr3d 4034 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 # (𝐶𝐷))
16 0cnd 7949 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → 0 ∈ ℂ)
17 apsym 8562 . . . . . 6 ((0 ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1816, 3, 17syl2anc 411 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (0 # (𝐶𝐷) ↔ (𝐶𝐷) # 0))
1915, 18mpbid 147 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → (𝐶𝐷) # 0)
203, 19jca 306 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0))
21 div2negap 8691 . . . 4 (((𝐴𝐵) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
22213expb 1204 . . 3 (((𝐴𝐵) ∈ ℂ ∧ ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) # 0)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
231, 20, 22syl2an 289 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
24 negsubdi2 8215 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
25 negsubdi2 8215 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶𝐷) = (𝐷𝐶))
26253adant3 1017 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷) → -(𝐶𝐷) = (𝐷𝐶))
2724, 26oveqan12d 5893 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
2823, 27eqtr3d 2212 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874  cc 7808  0cc0 7810   + caddc 7813  cmin 8127  -cneg 8128   # cap 8537   / cdiv 8628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629
This theorem is referenced by:  div2subapd  8794
  Copyright terms: Public domain W3C validator