ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldivndvdslt GIF version

Theorem fldivndvdslt 11971
Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
fldivndvdslt ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))

Proof of Theorem fldivndvdslt
StepHypRef Expression
1 zq 9655 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
213ad2ant1 1020 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → 𝐾 ∈ ℚ)
3 zq 9655 . . . . 5 (𝐿 ∈ ℤ → 𝐿 ∈ ℚ)
43adantr 276 . . . 4 ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) → 𝐿 ∈ ℚ)
543ad2ant2 1021 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → 𝐿 ∈ ℚ)
6 simp2r 1026 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → 𝐿 ≠ 0)
7 qdivcl 9672 . . 3 ((𝐾 ∈ ℚ ∧ 𝐿 ∈ ℚ ∧ 𝐿 ≠ 0) → (𝐾 / 𝐿) ∈ ℚ)
82, 5, 6, 7syl3anc 1249 . 2 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (𝐾 / 𝐿) ∈ ℚ)
9 simprl 529 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ∈ ℤ)
10 simprr 531 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ≠ 0)
11 simpl 109 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐾 ∈ ℤ)
12 dvdsval2 11828 . . . . 5 ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐿𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ))
139, 10, 11, 12syl3anc 1249 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (𝐿𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ))
1413notbid 668 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (¬ 𝐿𝐾 ↔ ¬ (𝐾 / 𝐿) ∈ ℤ))
1514biimp3a 1356 . 2 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → ¬ (𝐾 / 𝐿) ∈ ℤ)
16 flqltnz 10317 . 2 (((𝐾 / 𝐿) ∈ ℚ ∧ ¬ (𝐾 / 𝐿) ∈ ℤ) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
178, 15, 16syl2anc 411 1 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2160  wne 2360   class class class wbr 4018  cfv 5235  (class class class)co 5895  0cc0 7840   < clt 8021   / cdiv 8658  cz 9282  cq 9648  cfl 10298  cdvds 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-n0 9206  df-z 9283  df-q 9649  df-rp 9683  df-fl 10300  df-dvds 11826
This theorem is referenced by:  flodddiv4lt  11972
  Copyright terms: Public domain W3C validator