| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fldivndvdslt | GIF version | ||
| Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| fldivndvdslt | ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9700 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
| 2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐾 ∈ ℚ) |
| 3 | zq 9700 | . . . . 5 ⊢ (𝐿 ∈ ℤ → 𝐿 ∈ ℚ) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) → 𝐿 ∈ ℚ) |
| 5 | 4 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐿 ∈ ℚ) |
| 6 | simp2r 1026 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐿 ≠ 0) | |
| 7 | qdivcl 9717 | . . 3 ⊢ ((𝐾 ∈ ℚ ∧ 𝐿 ∈ ℚ ∧ 𝐿 ≠ 0) → (𝐾 / 𝐿) ∈ ℚ) | |
| 8 | 2, 5, 6, 7 | syl3anc 1249 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (𝐾 / 𝐿) ∈ ℚ) |
| 9 | simprl 529 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ∈ ℤ) | |
| 10 | simprr 531 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ≠ 0) | |
| 11 | simpl 109 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐾 ∈ ℤ) | |
| 12 | dvdsval2 11955 | . . . . 5 ⊢ ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐿 ∥ 𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ)) | |
| 13 | 9, 10, 11, 12 | syl3anc 1249 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (𝐿 ∥ 𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ)) |
| 14 | 13 | notbid 668 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (¬ 𝐿 ∥ 𝐾 ↔ ¬ (𝐾 / 𝐿) ∈ ℤ)) |
| 15 | 14 | biimp3a 1356 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → ¬ (𝐾 / 𝐿) ∈ ℤ) |
| 16 | flqltnz 10377 | . 2 ⊢ (((𝐾 / 𝐿) ∈ ℚ ∧ ¬ (𝐾 / 𝐿) ∈ ℤ) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | |
| 17 | 8, 15, 16 | syl2anc 411 | 1 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 0cc0 7879 < clt 8061 / cdiv 8699 ℤcz 9326 ℚcq 9693 ⌊cfl 10358 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 df-dvds 11953 |
| This theorem is referenced by: flodddiv4lt 12103 |
| Copyright terms: Public domain | W3C validator |