![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fldivndvdslt | GIF version |
Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
Ref | Expression |
---|---|
fldivndvdslt | ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 9268 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
2 | 1 | 3ad2ant1 970 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐾 ∈ ℚ) |
3 | zq 9268 | . . . . 5 ⊢ (𝐿 ∈ ℤ → 𝐿 ∈ ℚ) | |
4 | 3 | adantr 272 | . . . 4 ⊢ ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) → 𝐿 ∈ ℚ) |
5 | 4 | 3ad2ant2 971 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐿 ∈ ℚ) |
6 | simp2r 976 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → 𝐿 ≠ 0) | |
7 | qdivcl 9285 | . . 3 ⊢ ((𝐾 ∈ ℚ ∧ 𝐿 ∈ ℚ ∧ 𝐿 ≠ 0) → (𝐾 / 𝐿) ∈ ℚ) | |
8 | 2, 5, 6, 7 | syl3anc 1184 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (𝐾 / 𝐿) ∈ ℚ) |
9 | simprl 501 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ∈ ℤ) | |
10 | simprr 502 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ≠ 0) | |
11 | simpl 108 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐾 ∈ ℤ) | |
12 | dvdsval2 11291 | . . . . 5 ⊢ ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐿 ∥ 𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ)) | |
13 | 9, 10, 11, 12 | syl3anc 1184 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (𝐿 ∥ 𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ)) |
14 | 13 | notbid 633 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (¬ 𝐿 ∥ 𝐾 ↔ ¬ (𝐾 / 𝐿) ∈ ℤ)) |
15 | 14 | biimp3a 1291 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → ¬ (𝐾 / 𝐿) ∈ ℤ) |
16 | flqltnz 9901 | . 2 ⊢ (((𝐾 / 𝐿) ∈ ℚ ∧ ¬ (𝐾 / 𝐿) ∈ ℤ) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | |
17 | 8, 15, 16 | syl2anc 406 | 1 ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 ∈ wcel 1448 ≠ wne 2267 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 0cc0 7500 < clt 7672 / cdiv 8293 ℤcz 8906 ℚcq 9261 ⌊cfl 9882 ∥ cdvds 11288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-n0 8830 df-z 8907 df-q 9262 df-rp 9292 df-fl 9884 df-dvds 11289 |
This theorem is referenced by: flodddiv4lt 11428 |
Copyright terms: Public domain | W3C validator |