ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdlem GIF version

Theorem hashgcdlem 12192
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
hashgcdlem.b 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
hashgcdlem.f 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
Assertion
Ref Expression
hashgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑧,𝑀   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁,𝑦   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem hashgcdlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
2 oveq1 5860 . . . . 5 (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁)))
32eqeq1d 2179 . . . 4 (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1))
4 hashgcdlem.a . . . 4 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
53, 4elrab2 2889 . . 3 (𝑥𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1))
6 elfzonn0 10142 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0)
76ad2antrl 487 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0)
8 nnnn0 9142 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant2 1014 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℕ0)
109adantr 274 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈ ℕ0)
117, 10nn0mulcld 9193 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ ℕ0)
12 simpl1 995 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ)
13 elfzolt2 10112 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁))
1413ad2antrl 487 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁))
15 elfzoelz 10103 . . . . . . . . 9 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ)
1615ad2antrl 487 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ)
1716zred 9334 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ)
18 nnre 8885 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
19183ad2ant1 1013 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
2019adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ)
21 nnre 8885 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
22 nngt0 8903 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
2321, 22jca 304 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
24233ad2ant2 1014 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2524adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
26 ltmuldiv 8790 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2717, 20, 25, 26syl3anc 1233 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2814, 27mpbird 166 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀)
29 elfzo0 10138 . . . . 5 ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀))
3011, 12, 28, 29syl3anbrc 1176 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀))
31 nncn 8886 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
32313ad2ant1 1013 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℂ)
33 nncn 8886 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
34333ad2ant2 1014 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℂ)
35 nnap0 8907 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
36353ad2ant2 1014 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 # 0)
3732, 34, 36divcanap1d 8708 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3837adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3938eqcomd 2176 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁))
4039oveq2d 5869 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)))
41 nndivdvds 11758 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4241biimp3a 1340 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
4342nnzd 9333 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
4443adantr 274 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ)
45 mulgcdr 11973 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
4616, 44, 10, 45syl3anc 1233 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
47 simprr 527 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1)
4847oveq1d 5868 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁))
4934mulid2d 7938 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (1 · 𝑁) = 𝑁)
5049adantr 274 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁)
5148, 50eqtrd 2203 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁)
5240, 46, 513eqtrd 2207 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)
53 oveq1 5860 . . . . . 6 (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀))
5453eqeq1d 2179 . . . . 5 (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
55 hashgcdlem.b . . . . 5 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
5654, 55elrab2 2889 . . . 4 ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
5730, 52, 56sylanbrc 415 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵)
585, 57sylan2b 285 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑥𝐴) → (𝑥 · 𝑁) ∈ 𝐵)
59 oveq1 5860 . . . . 5 (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀))
6059eqeq1d 2179 . . . 4 (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁))
6160, 55elrab2 2889 . . 3 (𝑤𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁))
62 simprr 527 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁)
63 elfzoelz 10103 . . . . . . . . . . 11 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ)
6463ad2antrl 487 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ)
65 simpl1 995 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ)
6665nnzd 9333 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
67 gcddvds 11918 . . . . . . . . . 10 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6864, 66, 67syl2anc 409 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6968simpld 111 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤)
7062, 69eqbrtrrd 4013 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑤)
71 nnz 9231 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
72713ad2ant2 1014 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
7372adantr 274 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ)
74 nnne0 8906 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
75743ad2ant2 1014 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ≠ 0)
7675adantr 274 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0)
77 dvdsval2 11752 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7873, 76, 64, 77syl3anc 1233 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7970, 78mpbid 146 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ)
80 elfzofz 10118 . . . . . . . . 9 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
8180ad2antrl 487 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀))
82 elfznn0 10070 . . . . . . . 8 (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0)
83 nn0re 9144 . . . . . . . . 9 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
84 nn0ge0 9160 . . . . . . . . 9 (𝑤 ∈ ℕ0 → 0 ≤ 𝑤)
8583, 84jca 304 . . . . . . . 8 (𝑤 ∈ ℕ0 → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8681, 82, 853syl 17 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8724adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
88 divge0 8789 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 ≤ 𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁))
8986, 87, 88syl2anc 409 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁))
90 elnn0z 9225 . . . . . 6 ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁)))
9179, 89, 90sylanbrc 415 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℕ0)
9242adantr 274 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ)
93 elfzolt2 10112 . . . . . . 7 (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀)
9493ad2antrl 487 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀)
9564zred 9334 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ)
9619adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ)
97 ltdiv1 8784 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9895, 96, 87, 97syl3anc 1233 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9994, 98mpbid 146 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁))
100 elfzo0 10138 . . . . 5 ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
10191, 92, 99, 100syl3anbrc 1176 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)))
10262oveq1d 5868 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁))
103 simpl2 996 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ)
104 simpl3 997 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
105 gcddiv 11974 . . . . . 6 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁𝑤𝑁𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10664, 66, 103, 70, 104, 105syl32anc 1241 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10734, 36dividapd 8703 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 / 𝑁) = 1)
108107adantr 274 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1)
109102, 106, 1083eqtr3d 2211 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)
110 oveq1 5860 . . . . . 6 (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
111110eqeq1d 2179 . . . . 5 (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
112111, 4elrab2 2889 . . . 4 ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
113101, 109, 112sylanbrc 415 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴)
11461, 113sylan2b 285 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑤𝐵) → (𝑤 / 𝑁) ∈ 𝐴)
1155simplbi 272 . . . 4 (𝑥𝐴𝑥 ∈ (0..^(𝑀 / 𝑁)))
11661simplbi 272 . . . 4 (𝑤𝐵𝑤 ∈ (0..^𝑀))
117115, 116anim12i 336 . . 3 ((𝑥𝐴𝑤𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀)))
11863ad2antll 488 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ)
119118zcnd 9335 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ)
12034adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ)
12136adantr 274 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 # 0)
122119, 120, 121divcanap1d 8708 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤)
123122eqcomd 2176 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁))
124 oveq1 5860 . . . . . 6 (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁))
125124eqeq2d 2182 . . . . 5 (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁)))
126123, 125syl5ibrcom 156 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁)))
12715ad2antrl 487 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ)
128127zcnd 9335 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ)
129128, 120, 121divcanap4d 8713 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥)
130129eqcomd 2176 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁))
131 oveq1 5860 . . . . . 6 (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁))
132131eqeq2d 2182 . . . . 5 (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁)))
133130, 132syl5ibrcom 156 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁)))
134126, 133impbid 128 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
135117, 134sylan2 284 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥𝐴𝑤𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
1361, 58, 114, 135f1o2d 6054 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wne 2340  {crab 2452   class class class wbr 3989  cmpt 4050  1-1-ontowf1o 5197  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   · cmul 7779   < clt 7954  cle 7955   # cap 8500   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  ...cfz 9965  ..^cfzo 10098  cdvds 11749   gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  hashgcdeq  12193
  Copyright terms: Public domain W3C validator