ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdlem GIF version

Theorem hashgcdlem 11069
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
hashgcdlem.b 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
hashgcdlem.f 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
Assertion
Ref Expression
hashgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑧,𝑀   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁,𝑦   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem hashgcdlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
2 oveq1 5613 . . . . 5 (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁)))
32eqeq1d 2093 . . . 4 (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1))
4 hashgcdlem.a . . . 4 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
53, 4elrab2 2765 . . 3 (𝑥𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1))
6 elfzonn0 9517 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0)
76ad2antrl 474 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0)
8 nnnn0 8605 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant2 963 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℕ0)
109adantr 270 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈ ℕ0)
117, 10nn0mulcld 8656 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ ℕ0)
12 simpl1 944 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ)
13 elfzolt2 9487 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁))
1413ad2antrl 474 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁))
15 elfzoelz 9478 . . . . . . . . 9 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ)
1615ad2antrl 474 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ)
1716zred 8793 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ)
18 nnre 8356 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
19183ad2ant1 962 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
2019adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ)
21 nnre 8356 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
22 nngt0 8374 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
2321, 22jca 300 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
24233ad2ant2 963 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2524adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
26 ltmuldiv 8262 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2717, 20, 25, 26syl3anc 1172 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2814, 27mpbird 165 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀)
29 elfzo0 9513 . . . . 5 ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀))
3011, 12, 28, 29syl3anbrc 1125 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀))
31 nncn 8357 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
32313ad2ant1 962 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℂ)
33 nncn 8357 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
34333ad2ant2 963 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℂ)
35 nnap0 8378 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
36353ad2ant2 963 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 # 0)
3732, 34, 36divcanap1d 8188 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3837adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3938eqcomd 2090 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁))
4039oveq2d 5622 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)))
41 nndivdvds 10668 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4241biimp3a 1279 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
4342nnzd 8792 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
4443adantr 270 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ)
45 mulgcdr 10873 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
4616, 44, 10, 45syl3anc 1172 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
47 simprr 499 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1)
4847oveq1d 5621 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁))
4934mulid2d 7442 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (1 · 𝑁) = 𝑁)
5049adantr 270 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁)
5148, 50eqtrd 2117 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁)
5240, 46, 513eqtrd 2121 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)
53 oveq1 5613 . . . . . 6 (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀))
5453eqeq1d 2093 . . . . 5 (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
55 hashgcdlem.b . . . . 5 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
5654, 55elrab2 2765 . . . 4 ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
5730, 52, 56sylanbrc 408 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵)
585, 57sylan2b 281 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑥𝐴) → (𝑥 · 𝑁) ∈ 𝐵)
59 oveq1 5613 . . . . 5 (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀))
6059eqeq1d 2093 . . . 4 (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁))
6160, 55elrab2 2765 . . 3 (𝑤𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁))
62 simprr 499 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁)
63 elfzoelz 9478 . . . . . . . . . . 11 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ)
6463ad2antrl 474 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ)
65 simpl1 944 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ)
6665nnzd 8792 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
67 gcddvds 10821 . . . . . . . . . 10 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6864, 66, 67syl2anc 403 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6968simpld 110 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤)
7062, 69eqbrtrrd 3841 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑤)
71 nnz 8694 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
72713ad2ant2 963 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
7372adantr 270 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ)
74 nnne0 8377 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
75743ad2ant2 963 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ≠ 0)
7675adantr 270 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0)
77 dvdsval2 10665 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7873, 76, 64, 77syl3anc 1172 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7970, 78mpbid 145 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ)
80 elfzofz 9493 . . . . . . . . 9 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
8180ad2antrl 474 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀))
82 elfznn0 9450 . . . . . . . 8 (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0)
83 nn0re 8607 . . . . . . . . 9 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
84 nn0ge0 8623 . . . . . . . . 9 (𝑤 ∈ ℕ0 → 0 ≤ 𝑤)
8583, 84jca 300 . . . . . . . 8 (𝑤 ∈ ℕ0 → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8681, 82, 853syl 17 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8724adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
88 divge0 8261 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 ≤ 𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁))
8986, 87, 88syl2anc 403 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁))
90 elnn0z 8688 . . . . . 6 ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁)))
9179, 89, 90sylanbrc 408 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℕ0)
9242adantr 270 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ)
93 elfzolt2 9487 . . . . . . 7 (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀)
9493ad2antrl 474 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀)
9564zred 8793 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ)
9619adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ)
97 ltdiv1 8256 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9895, 96, 87, 97syl3anc 1172 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9994, 98mpbid 145 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁))
100 elfzo0 9513 . . . . 5 ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
10191, 92, 99, 100syl3anbrc 1125 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)))
10262oveq1d 5621 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁))
103 simpl2 945 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ)
104 simpl3 946 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
105 gcddiv 10874 . . . . . 6 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁𝑤𝑁𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10664, 66, 103, 70, 104, 105syl32anc 1180 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10734, 36dividapd 8184 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 / 𝑁) = 1)
108107adantr 270 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1)
109102, 106, 1083eqtr3d 2125 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)
110 oveq1 5613 . . . . . 6 (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
111110eqeq1d 2093 . . . . 5 (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
112111, 4elrab2 2765 . . . 4 ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
113101, 109, 112sylanbrc 408 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴)
11461, 113sylan2b 281 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑤𝐵) → (𝑤 / 𝑁) ∈ 𝐴)
1155simplbi 268 . . . 4 (𝑥𝐴𝑥 ∈ (0..^(𝑀 / 𝑁)))
11661simplbi 268 . . . 4 (𝑤𝐵𝑤 ∈ (0..^𝑀))
117115, 116anim12i 331 . . 3 ((𝑥𝐴𝑤𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀)))
11863ad2antll 475 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ)
119118zcnd 8794 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ)
12034adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ)
12136adantr 270 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 # 0)
122119, 120, 121divcanap1d 8188 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤)
123122eqcomd 2090 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁))
124 oveq1 5613 . . . . . 6 (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁))
125124eqeq2d 2096 . . . . 5 (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁)))
126123, 125syl5ibrcom 155 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁)))
12715ad2antrl 474 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ)
128127zcnd 8794 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ)
129128, 120, 121divcanap4d 8193 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥)
130129eqcomd 2090 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁))
131 oveq1 5613 . . . . . 6 (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁))
132131eqeq2d 2096 . . . . 5 (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁)))
133130, 132syl5ibrcom 155 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁)))
134126, 133impbid 127 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
135117, 134sylan2 280 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥𝐴𝑤𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
1361, 58, 114, 135f1o2d 5799 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  wne 2251  {crab 2359   class class class wbr 3819  cmpt 3873  1-1-ontowf1o 4976  (class class class)co 5606  cc 7284  cr 7285  0cc0 7286  1c1 7287   · cmul 7291   < clt 7458  cle 7459   # cap 7991   / cdiv 8070  cn 8349  0cn0 8598  cz 8675  ...cfz 9348  ..^cfzo 9473  cdvds 10662   gcd cgcd 10804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3927  ax-sep 3930  ax-nul 3938  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324  ax-iinf 4374  ax-cnex 7372  ax-resscn 7373  ax-1cn 7374  ax-1re 7375  ax-icn 7376  ax-addcl 7377  ax-addrcl 7378  ax-mulcl 7379  ax-mulrcl 7380  ax-addcom 7381  ax-mulcom 7382  ax-addass 7383  ax-mulass 7384  ax-distr 7385  ax-i2m1 7386  ax-0lt1 7387  ax-1rid 7388  ax-0id 7389  ax-rnegex 7390  ax-precex 7391  ax-cnre 7392  ax-pre-ltirr 7393  ax-pre-ltwlin 7394  ax-pre-lttrn 7395  ax-pre-apti 7396  ax-pre-ltadd 7397  ax-pre-mulgt0 7398  ax-pre-mulext 7399  ax-arch 7400  ax-caucvg 7401
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-int 3671  df-iun 3714  df-br 3820  df-opab 3874  df-mpt 3875  df-tr 3910  df-id 4092  df-po 4095  df-iso 4096  df-iord 4165  df-on 4167  df-ilim 4168  df-suc 4170  df-iom 4377  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-rn 4420  df-res 4421  df-ima 4422  df-iota 4942  df-fun 4979  df-fn 4980  df-f 4981  df-f1 4982  df-fo 4983  df-f1o 4984  df-fv 4985  df-riota 5562  df-ov 5609  df-oprab 5610  df-mpt2 5611  df-1st 5861  df-2nd 5862  df-recs 6017  df-frec 6103  df-sup 6615  df-pnf 7460  df-mnf 7461  df-xr 7462  df-ltxr 7463  df-le 7464  df-sub 7591  df-neg 7592  df-reap 7985  df-ap 7992  df-div 8071  df-inn 8350  df-2 8408  df-3 8409  df-4 8410  df-n0 8599  df-z 8676  df-uz 8944  df-q 9029  df-rp 9059  df-fz 9349  df-fzo 9474  df-fl 9597  df-mod 9650  df-iseq 9772  df-iexp 9845  df-cj 10163  df-re 10164  df-im 10165  df-rsqrt 10318  df-abs 10319  df-dvds 10663  df-gcd 10805
This theorem is referenced by:  hashgcdeq  11070
  Copyright terms: Public domain W3C validator