ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o GIF version

Theorem iccf1o 9961
Description: Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
iccf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 0re 7920 . . . . . . . . 9 0 ∈ ℝ
3 1re 7919 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 9896 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
54simp1bi 1007 . . . . . . 7 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
65adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
76recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 simpl2 996 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
98recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
107, 9mulcld 7940 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐵) ∈ ℂ)
11 ax-1cn 7867 . . . . . 6 1 ∈ ℂ
12 subcl 8118 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
1311, 7, 12sylancr 412 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 − 𝑥) ∈ ℂ)
14 simpl1 995 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1514recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
1613, 15mulcld 7940 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) ∈ ℂ)
1710, 16addcomd 8070 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)))
18 lincmb01cmp 9960 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)) ∈ (𝐴[,]𝐵))
1917, 18eqeltrd 2247 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) ∈ (𝐴[,]𝐵))
20 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
21 simpl1 995 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
22 simpl2 996 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
23 elicc2 9895 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
24233adant3 1012 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2524biimpa 294 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2625simp1d 1004 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
27 eqid 2170 . . . . . . 7 (𝐴𝐴) = (𝐴𝐴)
28 eqid 2170 . . . . . . 7 (𝐵𝐴) = (𝐵𝐴)
2927, 28iccshftl 9953 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3021, 22, 26, 21, 29syl22anc 1234 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3120, 30mpbid 146 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴)))
3226, 21resubcld 8300 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℝ)
3332recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℂ)
34 difrp 9649 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
3534biimp3a 1340 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
3635adantr 274 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℝ+)
3736rpcnd 9655 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℂ)
38 rpap0 9627 . . . . . 6 ((𝐵𝐴) ∈ ℝ+ → (𝐵𝐴) # 0)
3936, 38syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) # 0)
4033, 37, 39divcanap1d 8708 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) = (𝑦𝐴))
4137mul02d 8311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = 0)
4221recnd 7948 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4342subidd 8218 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴𝐴) = 0)
4441, 43eqtr4d 2206 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = (𝐴𝐴))
4537mulid2d 7938 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
4644, 45oveq12d 5871 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = ((𝐴𝐴)[,](𝐵𝐴)))
4731, 40, 463eltr4d 2254 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
48 0red 7921 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
49 1red 7935 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℝ)
5032, 36rerpdivcld 9685 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ)
51 eqid 2170 . . . . 5 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
52 eqid 2170 . . . . 5 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
5351, 52iccdil 9955 . . . 4 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5448, 49, 50, 36, 53syl22anc 1234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5547, 54mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1))
56 eqcom 2172 . . . 4 (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ ((𝑦𝐴) / (𝐵𝐴)) = 𝑥)
5733adantrl 475 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦𝐴) ∈ ℂ)
587adantrr 476 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
5937adantrl 475 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) ∈ ℂ)
6039adantrl 475 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) # 0)
6157, 58, 59, 60divmulap3d 8742 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((𝑦𝐴) / (𝐵𝐴)) = 𝑥 ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6256, 61syl5bb 191 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6326adantrl 475 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
6463recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
6542adantrl 475 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℂ)
668, 14resubcld 8300 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
676, 66remulcld 7950 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6867adantrr 476 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6968recnd 7948 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℂ)
7064, 65, 69subadd2d 8249 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ ((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦))
71 eqcom 2172 . . . 4 (((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴))
7270, 71bitrdi 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴)))
737, 15mulcld 7940 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐴) ∈ ℂ)
7410, 73, 15subadd23d 8252 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
757, 9, 15subdid 8333 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) = ((𝑥 · 𝐵) − (𝑥 · 𝐴)))
7675oveq1d 5868 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴))
77 1cnd 7936 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 1 ∈ ℂ)
7877, 7, 15subdird 8334 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = ((1 · 𝐴) − (𝑥 · 𝐴)))
7915mulid2d 7938 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
8079oveq1d 5868 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑥 · 𝐴)) = (𝐴 − (𝑥 · 𝐴)))
8178, 80eqtrd 2203 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = (𝐴 − (𝑥 · 𝐴)))
8281oveq2d 5869 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
8374, 76, 823eqtr4d 2213 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8483adantrr 476 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8584eqeq2d 2182 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
8662, 72, 853bitrd 213 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
871, 19, 55, 86f1ocnv2d 6053 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  cmpt 4050  ccnv 4610  1-1-ontowf1o 5197  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  +crp 9610  [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-rp 9611  df-icc 9852
This theorem is referenced by:  iccen  9963
  Copyright terms: Public domain W3C validator