ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o GIF version

Theorem iccf1o 9390
Description: Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
iccf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 0re 7467 . . . . . . . . 9 0 ∈ ℝ
3 1re 7466 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 9326 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
54simp1bi 958 . . . . . . 7 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
65adantl 271 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
76recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 simpl2 947 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
98recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
107, 9mulcld 7487 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐵) ∈ ℂ)
11 ax-1cn 7417 . . . . . 6 1 ∈ ℂ
12 subcl 7660 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
1311, 7, 12sylancr 405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 − 𝑥) ∈ ℂ)
14 simpl1 946 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1514recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
1613, 15mulcld 7487 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) ∈ ℂ)
1710, 16addcomd 7612 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)))
18 lincmb01cmp 9389 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)) ∈ (𝐴[,]𝐵))
1917, 18eqeltrd 2164 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) ∈ (𝐴[,]𝐵))
20 simpr 108 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
21 simpl1 946 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
22 simpl2 947 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
23 elicc2 9325 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
24233adant3 963 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2524biimpa 290 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2625simp1d 955 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
27 eqid 2088 . . . . . . 7 (𝐴𝐴) = (𝐴𝐴)
28 eqid 2088 . . . . . . 7 (𝐵𝐴) = (𝐵𝐴)
2927, 28iccshftl 9382 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3021, 22, 26, 21, 29syl22anc 1175 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3120, 30mpbid 145 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴)))
3226, 21resubcld 7838 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℝ)
3332recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℂ)
34 difrp 9139 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
3534biimp3a 1281 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
3635adantr 270 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℝ+)
3736rpcnd 9144 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℂ)
38 rpap0 9119 . . . . . 6 ((𝐵𝐴) ∈ ℝ+ → (𝐵𝐴) # 0)
3936, 38syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) # 0)
4033, 37, 39divcanap1d 8231 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) = (𝑦𝐴))
4137mul02d 7849 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = 0)
4221recnd 7495 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4342subidd 7760 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴𝐴) = 0)
4441, 43eqtr4d 2123 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = (𝐴𝐴))
4537mulid2d 7485 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
4644, 45oveq12d 5652 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = ((𝐴𝐴)[,](𝐵𝐴)))
4731, 40, 463eltr4d 2171 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
48 0red 7468 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
49 1red 7482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℝ)
5032, 36rerpdivcld 9174 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ)
51 eqid 2088 . . . . 5 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
52 eqid 2088 . . . . 5 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
5351, 52iccdil 9384 . . . 4 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5448, 49, 50, 36, 53syl22anc 1175 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5547, 54mpbird 165 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1))
56 eqcom 2090 . . . 4 (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ ((𝑦𝐴) / (𝐵𝐴)) = 𝑥)
5733adantrl 462 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦𝐴) ∈ ℂ)
587adantrr 463 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
5937adantrl 462 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) ∈ ℂ)
6039adantrl 462 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) # 0)
6157, 58, 59, 60divmulap3d 8264 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((𝑦𝐴) / (𝐵𝐴)) = 𝑥 ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6256, 61syl5bb 190 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6326adantrl 462 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
6463recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
6542adantrl 462 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℂ)
668, 14resubcld 7838 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
676, 66remulcld 7497 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6867adantrr 463 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6968recnd 7495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℂ)
7064, 65, 69subadd2d 7791 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ ((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦))
71 eqcom 2090 . . . 4 (((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴))
7270, 71syl6bb 194 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴)))
737, 15mulcld 7487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐴) ∈ ℂ)
7410, 73, 15subadd23d 7794 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
757, 9, 15subdid 7871 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) = ((𝑥 · 𝐵) − (𝑥 · 𝐴)))
7675oveq1d 5649 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴))
77 1cnd 7483 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 1 ∈ ℂ)
7877, 7, 15subdird 7872 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = ((1 · 𝐴) − (𝑥 · 𝐴)))
7915mulid2d 7485 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
8079oveq1d 5649 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑥 · 𝐴)) = (𝐴 − (𝑥 · 𝐴)))
8178, 80eqtrd 2120 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = (𝐴 − (𝑥 · 𝐴)))
8281oveq2d 5650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
8374, 76, 823eqtr4d 2130 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8483adantrr 463 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8584eqeq2d 2099 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
8662, 72, 853bitrd 212 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
871, 19, 55, 86f1ocnv2d 5830 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438   class class class wbr 3837  cmpt 3891  ccnv 4427  1-1-ontowf1o 5001  (class class class)co 5634  cc 7327  cr 7328  0cc0 7329  1c1 7330   + caddc 7332   · cmul 7334   < clt 7501  cle 7502  cmin 7632   # cap 8034   / cdiv 8113  +crp 9103  [,]cicc 9278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-rp 9104  df-icc 9282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator