ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o GIF version

Theorem iccf1o 10096
Description: Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
iccf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 0re 8043 . . . . . . . . 9 0 ∈ ℝ
3 1re 8042 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 10031 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
54simp1bi 1014 . . . . . . 7 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
65adantl 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
76recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 simpl2 1003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
98recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
107, 9mulcld 8064 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐵) ∈ ℂ)
11 ax-1cn 7989 . . . . . 6 1 ∈ ℂ
12 subcl 8242 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
1311, 7, 12sylancr 414 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 − 𝑥) ∈ ℂ)
14 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1514recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
1613, 15mulcld 8064 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) ∈ ℂ)
1710, 16addcomd 8194 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)))
18 lincmb01cmp 10095 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)) ∈ (𝐴[,]𝐵))
1917, 18eqeltrd 2273 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) ∈ (𝐴[,]𝐵))
20 simpr 110 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
21 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
22 simpl2 1003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
23 elicc2 10030 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
24233adant3 1019 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2524biimpa 296 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2625simp1d 1011 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
27 eqid 2196 . . . . . . 7 (𝐴𝐴) = (𝐴𝐴)
28 eqid 2196 . . . . . . 7 (𝐵𝐴) = (𝐵𝐴)
2927, 28iccshftl 10088 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3021, 22, 26, 21, 29syl22anc 1250 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3120, 30mpbid 147 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴)))
3226, 21resubcld 8424 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℝ)
3332recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℂ)
34 difrp 9784 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
3534biimp3a 1356 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
3635adantr 276 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℝ+)
3736rpcnd 9790 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℂ)
38 rpap0 9762 . . . . . 6 ((𝐵𝐴) ∈ ℝ+ → (𝐵𝐴) # 0)
3936, 38syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) # 0)
4033, 37, 39divcanap1d 8835 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) = (𝑦𝐴))
4137mul02d 8435 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = 0)
4221recnd 8072 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4342subidd 8342 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴𝐴) = 0)
4441, 43eqtr4d 2232 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = (𝐴𝐴))
4537mulid2d 8062 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
4644, 45oveq12d 5943 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = ((𝐴𝐴)[,](𝐵𝐴)))
4731, 40, 463eltr4d 2280 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
48 0red 8044 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
49 1red 8058 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℝ)
5032, 36rerpdivcld 9820 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ)
51 eqid 2196 . . . . 5 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
52 eqid 2196 . . . . 5 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
5351, 52iccdil 10090 . . . 4 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5448, 49, 50, 36, 53syl22anc 1250 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5547, 54mpbird 167 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1))
56 eqcom 2198 . . . 4 (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ ((𝑦𝐴) / (𝐵𝐴)) = 𝑥)
5733adantrl 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦𝐴) ∈ ℂ)
587adantrr 479 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
5937adantrl 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) ∈ ℂ)
6039adantrl 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) # 0)
6157, 58, 59, 60divmulap3d 8869 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((𝑦𝐴) / (𝐵𝐴)) = 𝑥 ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6256, 61bitrid 192 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6326adantrl 478 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
6463recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
6542adantrl 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℂ)
668, 14resubcld 8424 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
676, 66remulcld 8074 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6867adantrr 479 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6968recnd 8072 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℂ)
7064, 65, 69subadd2d 8373 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ ((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦))
71 eqcom 2198 . . . 4 (((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴))
7270, 71bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴)))
737, 15mulcld 8064 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐴) ∈ ℂ)
7410, 73, 15subadd23d 8376 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
757, 9, 15subdid 8457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) = ((𝑥 · 𝐵) − (𝑥 · 𝐴)))
7675oveq1d 5940 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴))
77 1cnd 8059 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 1 ∈ ℂ)
7877, 7, 15subdird 8458 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = ((1 · 𝐴) − (𝑥 · 𝐴)))
7915mulid2d 8062 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
8079oveq1d 5940 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑥 · 𝐴)) = (𝐴 − (𝑥 · 𝐴)))
8178, 80eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = (𝐴 − (𝑥 · 𝐴)))
8281oveq2d 5941 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
8374, 76, 823eqtr4d 2239 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8483adantrr 479 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8584eqeq2d 2208 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
8662, 72, 853bitrd 214 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
871, 19, 55, 86f1ocnv2d 6131 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  ccnv 4663  1-1-ontowf1o 5258  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  +crp 9745  [,]cicc 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-rp 9746  df-icc 9987
This theorem is referenced by:  iccen  10098
  Copyright terms: Public domain W3C validator