ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnawordex GIF version

Theorem nnawordex 6596
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnawordex
StepHypRef Expression
1 nntri3or 6560 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
213adant3 1019 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 nnaordex 6595 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
4 simpr 110 . . . . . . . 8 ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → (𝐴 +o 𝑥) = 𝐵)
54reximi 2594 . . . . . . 7 (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
63, 5biimtrdi 163 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
763adant3 1019 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
8 nna0 6541 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
983ad2ant1 1020 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
10 eqeq2 2206 . . . . . . 7 (𝐴 = 𝐵 → ((𝐴 +o ∅) = 𝐴 ↔ (𝐴 +o ∅) = 𝐵))
119, 10syl5ibcom 155 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 = 𝐵 → (𝐴 +o ∅) = 𝐵))
12 peano1 4631 . . . . . . 7 ∅ ∈ ω
13 oveq2 5933 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
1413eqeq1d 2205 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o ∅) = 𝐵))
1514rspcev 2868 . . . . . . 7 ((∅ ∈ ω ∧ (𝐴 +o ∅) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
1612, 15mpan 424 . . . . . 6 ((𝐴 +o ∅) = 𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
1711, 16syl6 33 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 = 𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
18 nntri1 6563 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1918biimp3a 1356 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
2019pm2.21d 620 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵𝐴 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
217, 17, 203jaod 1315 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
222, 21mpd 13 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
23223expia 1207 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
24 nnaword1 6580 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
25 sseq2 3208 . . . . 5 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
2624, 25syl5ibcom 155 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2726rexlimdva 2614 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2827adantr 276 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2923, 28impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979  w3a 980   = wceq 1364  wcel 2167  wrex 2476  wss 3157  c0 3451  ωcom 4627  (class class class)co 5925   +o coa 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487
This theorem is referenced by:  prarloclemn  7583
  Copyright terms: Public domain W3C validator