ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnawordex GIF version

Theorem nnawordex 6508
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnawordex
StepHypRef Expression
1 nntri3or 6472 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
213adant3 1012 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 nnaordex 6507 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
4 simpr 109 . . . . . . . 8 ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → (𝐴 +o 𝑥) = 𝐵)
54reximi 2567 . . . . . . 7 (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
63, 5syl6bi 162 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
763adant3 1012 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
8 nna0 6453 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
983ad2ant1 1013 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
10 eqeq2 2180 . . . . . . 7 (𝐴 = 𝐵 → ((𝐴 +o ∅) = 𝐴 ↔ (𝐴 +o ∅) = 𝐵))
119, 10syl5ibcom 154 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 = 𝐵 → (𝐴 +o ∅) = 𝐵))
12 peano1 4578 . . . . . . 7 ∅ ∈ ω
13 oveq2 5861 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
1413eqeq1d 2179 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o ∅) = 𝐵))
1514rspcev 2834 . . . . . . 7 ((∅ ∈ ω ∧ (𝐴 +o ∅) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
1612, 15mpan 422 . . . . . 6 ((𝐴 +o ∅) = 𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
1711, 16syl6 33 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 = 𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
18 nntri1 6475 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1918biimp3a 1340 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
2019pm2.21d 614 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵𝐴 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
217, 17, 203jaod 1299 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
222, 21mpd 13 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
23223expia 1200 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
24 nnaword1 6492 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
25 sseq2 3171 . . . . 5 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
2624, 25syl5ibcom 154 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2726rexlimdva 2587 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2827adantr 274 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2923, 28impbid 128 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 972  w3a 973   = wceq 1348  wcel 2141  wrex 2449  wss 3121  c0 3414  ωcom 4574  (class class class)co 5853   +o coa 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399
This theorem is referenced by:  prarloclemn  7461
  Copyright terms: Public domain W3C validator