![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > efltim | GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.) |
Ref | Expression |
---|---|
efltim | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด < ๐ต โ (expโ๐ด) < (expโ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 998 | . . . . . . 7 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ ๐ต โ โ) | |
2 | simp1 997 | . . . . . . 7 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ ๐ด โ โ) | |
3 | 1, 2 | resubcld 8340 | . . . . . 6 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (๐ต โ ๐ด) โ โ) |
4 | posdif 8414 | . . . . . . 7 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด < ๐ต โ 0 < (๐ต โ ๐ด))) | |
5 | 4 | biimp3a 1345 | . . . . . 6 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ 0 < (๐ต โ ๐ด)) |
6 | 3, 5 | elrpd 9695 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (๐ต โ ๐ด) โ โ+) |
7 | efgt1 11707 | . . . . 5 โข ((๐ต โ ๐ด) โ โ+ โ 1 < (expโ(๐ต โ ๐ด))) | |
8 | 6, 7 | syl 14 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ 1 < (expโ(๐ต โ ๐ด))) |
9 | 2 | reefcld 11679 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ๐ด) โ โ) |
10 | 3 | reefcld 11679 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ(๐ต โ ๐ด)) โ โ) |
11 | efgt0 11694 | . . . . . 6 โข (๐ด โ โ โ 0 < (expโ๐ด)) | |
12 | 2, 11 | syl 14 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ 0 < (expโ๐ด)) |
13 | ltmulgt11 8823 | . . . . 5 โข (((expโ๐ด) โ โ โง (expโ(๐ต โ ๐ด)) โ โ โง 0 < (expโ๐ด)) โ (1 < (expโ(๐ต โ ๐ด)) โ (expโ๐ด) < ((expโ๐ด) ยท (expโ(๐ต โ ๐ด))))) | |
14 | 9, 10, 12, 13 | syl3anc 1238 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (1 < (expโ(๐ต โ ๐ด)) โ (expโ๐ด) < ((expโ๐ด) ยท (expโ(๐ต โ ๐ด))))) |
15 | 8, 14 | mpbid 147 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ๐ด) < ((expโ๐ด) ยท (expโ(๐ต โ ๐ด)))) |
16 | 2 | recnd 7988 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ ๐ด โ โ) |
17 | 3 | recnd 7988 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (๐ต โ ๐ด) โ โ) |
18 | efadd 11685 | . . . . 5 โข ((๐ด โ โ โง (๐ต โ ๐ด) โ โ) โ (expโ(๐ด + (๐ต โ ๐ด))) = ((expโ๐ด) ยท (expโ(๐ต โ ๐ด)))) | |
19 | 16, 17, 18 | syl2anc 411 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ(๐ด + (๐ต โ ๐ด))) = ((expโ๐ด) ยท (expโ(๐ต โ ๐ด)))) |
20 | 1 | recnd 7988 | . . . . . 6 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ ๐ต โ โ) |
21 | 16, 20 | pncan3d 8273 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (๐ด + (๐ต โ ๐ด)) = ๐ต) |
22 | 21 | fveq2d 5521 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ(๐ด + (๐ต โ ๐ด))) = (expโ๐ต)) |
23 | 19, 22 | eqtr3d 2212 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ ((expโ๐ด) ยท (expโ(๐ต โ ๐ด))) = (expโ๐ต)) |
24 | 15, 23 | breqtrd 4031 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด < ๐ต) โ (expโ๐ด) < (expโ๐ต)) |
25 | 24 | 3expia 1205 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด < ๐ต โ (expโ๐ด) < (expโ๐ต))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 โง w3a 978 = wceq 1353 โ wcel 2148 class class class wbr 4005 โcfv 5218 (class class class)co 5877 โcc 7811 โcr 7812 0cc0 7813 1c1 7814 + caddc 7816 ยท cmul 7818 < clt 7994 โ cmin 8130 โ+crp 9655 expce 11652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-ico 9896 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 |
This theorem is referenced by: reef11 11709 reeff1olem 14277 efltlemlt 14280 eflt 14281 |
Copyright terms: Public domain | W3C validator |