ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 GIF version

Theorem subfzo0 10212
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 10152 . . 3 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzo0 10152 . . . . 5 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
3 nn0re 9158 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
43adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℝ)
5 nnre 8899 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6 nn0re 9158 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
7 resubcl 8195 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝑁𝐽) ∈ ℝ)
85, 6, 7syl2an 289 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁𝐽) ∈ ℝ)
98ancoms 268 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐽) ∈ ℝ)
1093adant3 1017 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℝ)
114, 10anim12i 338 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ))
12 nn0ge0 9174 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
1312adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 0 ≤ 𝐼)
14 posdif 8386 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
156, 5, 14syl2an 289 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
1615biimp3a 1345 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 < (𝑁𝐽))
1713, 16anim12i 338 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽)))
18 addgegt0 8380 . . . . . . . . . 10 (((𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ) ∧ (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽))) → 0 < (𝐼 + (𝑁𝐽)))
1911, 17, 18syl2anc 411 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < (𝐼 + (𝑁𝐽)))
20 nn0cn 9159 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2120adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℂ)
2221adantr 276 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℂ)
23 nn0cn 9159 . . . . . . . . . . . 12 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
24233ad2ant1 1018 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
2524adantl 277 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℂ)
26 nncn 8900 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
27263ad2ant2 1019 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2827adantl 277 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℂ)
2922, 25, 28subadd23d 8264 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) + 𝑁) = (𝐼 + (𝑁𝐽)))
3019, 29breqtrrd 4026 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < ((𝐼𝐽) + 𝑁))
3163ad2ant1 1018 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
32 resubcl 8195 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐼𝐽) ∈ ℝ)
334, 31, 32syl2an 289 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) ∈ ℝ)
3453ad2ant2 1019 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
3534adantl 277 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
3633, 35possumd 8500 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 < ((𝐼𝐽) + 𝑁) ↔ -𝑁 < (𝐼𝐽)))
3730, 36mpbid 147 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → -𝑁 < (𝐼𝐽))
383adantr 276 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
3934adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
40 readdcl 7912 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 + 𝑁) ∈ ℝ)
416, 5, 40syl2an 289 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 + 𝑁) ∈ ℝ)
42413adant3 1017 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 𝑁) ∈ ℝ)
4342adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 + 𝑁) ∈ ℝ)
4438, 39, 433jca 1177 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐽 + 𝑁) ∈ ℝ))
45 nn0ge0 9174 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
46453ad2ant1 1018 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
4746adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
485, 6anim12i 338 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
4948ancoms 268 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
50493adant3 1017 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
5150adantl 277 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
52 addge02 8404 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5351, 52syl 14 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5447, 53mpbid 147 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ≤ (𝐽 + 𝑁))
5544, 54lelttrdi 8357 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 < 𝑁𝐼 < (𝐽 + 𝑁)))
5655impancom 260 . . . . . . . . 9 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐼 < (𝐽 + 𝑁)))
5756imp 124 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 < (𝐽 + 𝑁))
584adantr 276 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
5931adantl 277 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
6058, 59, 35ltsubadd2d 8474 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) < 𝑁𝐼 < (𝐽 + 𝑁)))
6157, 60mpbird 167 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) < 𝑁)
6237, 61jca 306 . . . . . 6 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
6362ex 115 . . . . 5 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
642, 63biimtrid 152 . . . 4 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
65643adant2 1016 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
661, 65sylbi 121 . 2 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
6766imp 124 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2146   class class class wbr 3998  (class class class)co 5865  cc 7784  cr 7785  0cc0 7786   + caddc 7789   < clt 7966  cle 7967  cmin 8102  -cneg 8103  cn 8892  0cn0 9149  ..^cfzo 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980  df-fzo 10113
This theorem is referenced by:  addmodlteq  10368
  Copyright terms: Public domain W3C validator