ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 GIF version

Theorem subfzo0 10318
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 10258 . . 3 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzo0 10258 . . . . 5 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
3 nn0re 9258 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
43adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℝ)
5 nnre 8997 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6 nn0re 9258 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
7 resubcl 8290 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝑁𝐽) ∈ ℝ)
85, 6, 7syl2an 289 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁𝐽) ∈ ℝ)
98ancoms 268 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐽) ∈ ℝ)
1093adant3 1019 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℝ)
114, 10anim12i 338 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ))
12 nn0ge0 9274 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
1312adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 0 ≤ 𝐼)
14 posdif 8482 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
156, 5, 14syl2an 289 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
1615biimp3a 1356 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 < (𝑁𝐽))
1713, 16anim12i 338 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽)))
18 addgegt0 8476 . . . . . . . . . 10 (((𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ) ∧ (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽))) → 0 < (𝐼 + (𝑁𝐽)))
1911, 17, 18syl2anc 411 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < (𝐼 + (𝑁𝐽)))
20 nn0cn 9259 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2120adantr 276 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℂ)
2221adantr 276 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℂ)
23 nn0cn 9259 . . . . . . . . . . . 12 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
24233ad2ant1 1020 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
2524adantl 277 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℂ)
26 nncn 8998 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
27263ad2ant2 1021 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2827adantl 277 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℂ)
2922, 25, 28subadd23d 8359 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) + 𝑁) = (𝐼 + (𝑁𝐽)))
3019, 29breqtrrd 4061 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < ((𝐼𝐽) + 𝑁))
3163ad2ant1 1020 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
32 resubcl 8290 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐼𝐽) ∈ ℝ)
334, 31, 32syl2an 289 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) ∈ ℝ)
3453ad2ant2 1021 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
3534adantl 277 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
3633, 35possumd 8596 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 < ((𝐼𝐽) + 𝑁) ↔ -𝑁 < (𝐼𝐽)))
3730, 36mpbid 147 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → -𝑁 < (𝐼𝐽))
383adantr 276 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
3934adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
40 readdcl 8005 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 + 𝑁) ∈ ℝ)
416, 5, 40syl2an 289 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 + 𝑁) ∈ ℝ)
42413adant3 1019 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 𝑁) ∈ ℝ)
4342adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 + 𝑁) ∈ ℝ)
4438, 39, 433jca 1179 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐽 + 𝑁) ∈ ℝ))
45 nn0ge0 9274 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
46453ad2ant1 1020 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
4746adantl 277 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
485, 6anim12i 338 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
4948ancoms 268 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
50493adant3 1019 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
5150adantl 277 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
52 addge02 8500 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5351, 52syl 14 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5447, 53mpbid 147 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ≤ (𝐽 + 𝑁))
5544, 54lelttrdi 8453 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 < 𝑁𝐼 < (𝐽 + 𝑁)))
5655impancom 260 . . . . . . . . 9 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐼 < (𝐽 + 𝑁)))
5756imp 124 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 < (𝐽 + 𝑁))
584adantr 276 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
5931adantl 277 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
6058, 59, 35ltsubadd2d 8570 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) < 𝑁𝐼 < (𝐽 + 𝑁)))
6157, 60mpbird 167 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) < 𝑁)
6237, 61jca 306 . . . . . 6 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
6362ex 115 . . . . 5 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
642, 63biimtrid 152 . . . 4 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
65643adant2 1018 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
661, 65sylbi 121 . 2 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
6766imp 124 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879   + caddc 7882   < clt 8061  cle 8062  cmin 8197  -cneg 8198  cn 8990  0cn0 9249  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  addmodlteq  10490
  Copyright terms: Public domain W3C validator