ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitprm1 GIF version

Theorem fzosplitprm1 10137
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 982 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ)
2 simp2 983 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
3 zre 9172 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 9172 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltle 7965 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
63, 4, 5syl2an 287 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴𝐵))
763impia 1182 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
8 eluz2 9446 . . . 4 (𝐵 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵))
91, 2, 7, 8syl3anbrc 1166 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ𝐴))
10 fzosplitsn 10136 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
119, 10syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
12 zcn 9173 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 ax-1cn 7826 . . . . . . 7 1 ∈ ℂ
14 npcan 8085 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
1514eqcomd 2163 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
1612, 13, 15sylancl 410 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1))
17163ad2ant2 1004 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 = ((𝐵 − 1) + 1))
1817oveq2d 5841 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
19 peano2zm 9206 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
20193ad2ant2 1004 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
21 zltlem1 9225 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 ≤ (𝐵 − 1)))
2221biimp3a 1327 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1))
23 eluz2 9446 . . . . . 6 ((𝐵 − 1) ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1)))
241, 20, 22, 23syl3anbrc 1166 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
25 fzosplitsn 10136 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2624, 25syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2718, 26eqtrd 2190 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2827uneq1d 3260 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ∪ {𝐵}) = (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}))
29 unass 3264 . . 3 (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵}))
30 df-pr 3567 . . . . . 6 {(𝐵 − 1), 𝐵} = ({(𝐵 − 1)} ∪ {𝐵})
3130eqcomi 2161 . . . . 5 ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵}
3231a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵})
3332uneq2d 3261 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵})) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3429, 33syl5eq 2202 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3511, 28, 343eqtrd 2194 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  cun 3100  {csn 3560  {cpr 3561   class class class wbr 3966  cfv 5171  (class class class)co 5825  cc 7731  cr 7732  1c1 7734   + caddc 7736   < clt 7913  cle 7914  cmin 8047  cz 9168  cuz 9440  ..^cfzo 10045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441  df-fz 9914  df-fzo 10046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator