| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgtop11 | GIF version | ||
| Description: The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| tgtop11 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 14540 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 2 | tgtop 14540 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 3 | 1, 2 | eqeqan12d 2221 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
| 4 | 3 | biimp3a 1358 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 topGenctg 13086 Topctop 14469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topgen 13092 df-top 14470 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |