| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgtop11 | GIF version | ||
| Description: The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| tgtop11 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 14304 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 2 | tgtop 14304 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 3 | 1, 2 | eqeqan12d 2212 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
| 4 | 3 | biimp3a 1356 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 topGenctg 12925 Topctop 14233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 df-top 14234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |