| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > braba | GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopaba.1 | ⊢ 𝐴 ∈ V |
| opelopaba.2 | ⊢ 𝐵 ∈ V |
| opelopaba.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| braba.4 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| braba | ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopaba.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopaba.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopaba.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | braba.4 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 3, 4 | brabga 4309 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| 6 | 1, 2, 5 | mp2an 426 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 {copab 4103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |