ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  braba GIF version

Theorem braba 4222
Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopaba.1 𝐴 ∈ V
opelopaba.2 𝐵 ∈ V
opelopaba.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
braba.4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
braba (𝐴𝑅𝐵𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem braba
StepHypRef Expression
1 opelopaba.1 . 2 𝐴 ∈ V
2 opelopaba.2 . 2 𝐵 ∈ V
3 opelopaba.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
4 braba.4 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 4219 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝜓))
61, 2, 5mp2an 423 1 (𝐴𝑅𝐵𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125  Vcvv 2709   class class class wbr 3961  {copab 4020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator