ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltneg GIF version

Theorem ltneg 8248
Description: Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))

Proof of Theorem ltneg
StepHypRef Expression
1 0re 7790 . . 3 0 ∈ ℝ
2 ltsub2 8245 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 𝐵 ↔ (0 − 𝐵) < (0 − 𝐴)))
31, 2mp3an3 1305 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (0 − 𝐵) < (0 − 𝐴)))
4 df-neg 7960 . . 3 -𝐵 = (0 − 𝐵)
5 df-neg 7960 . . 3 -𝐴 = (0 − 𝐴)
64, 5breq12i 3946 . 2 (-𝐵 < -𝐴 ↔ (0 − 𝐵) < (0 − 𝐴))
73, 6syl6bbr 197 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644   < clt 7824  cmin 7957  -cneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960
This theorem is referenced by:  ltnegcon1  8249  ltnegcon2  8250  lt0neg1  8254  lt0neg2  8255  eqord2  8270  ltnegi  8279  ltnegd  8309  reapneg  8383  negiso  8737  xltnegi  9648  iooneg  9801
  Copyright terms: Public domain W3C validator