ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4042
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4038 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  breqtri  4059  en1  6867  snnen2og  6929  1nen2  6931  pm54.43  7271  caucvgprprlemval  7774  caucvgprprlemmu  7781  caucvgsr  7888  pitonnlem1  7931  lt0neg2  8515  le0neg2  8517  negap0  8676  recexaplem2  8698  recgt1  8943  crap0  9004  addltmul  9247  nn0lt10b  9425  nn0lt2  9426  3halfnz  9442  xlt0neg2  9933  xle0neg2  9935  iccshftr  10088  iccshftl  10090  iccdil  10092  icccntr  10094  fihashen1  10910  cjap0  11091  abs00ap  11246  xrmaxiflemval  11434  mertenslem2  11720  mertensabs  11721  3dvdsdec  12049  3dvds2dec  12050  ndvdsi  12117  bitsfzo  12139  3prm  12323  prmfac1  12347  prm23lt5  12459  dec2dvds  12607  dec5dvds2  12609  sinhalfpilem  15135  sincosq1lem  15169  sincosq1sgn  15170  sincosq2sgn  15171  sincosq3sgn  15172  sincosq4sgn  15173  logrpap0b  15220  gausslemma2dlem1a  15407  2lgsoddprmlem3  15460
  Copyright terms: Public domain W3C validator