| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4038 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: breqtri 4059 en1 6867 snnen2og 6929 1nen2 6931 pm54.43 7269 caucvgprprlemval 7772 caucvgprprlemmu 7779 caucvgsr 7886 pitonnlem1 7929 lt0neg2 8513 le0neg2 8515 negap0 8674 recexaplem2 8696 recgt1 8941 crap0 9002 addltmul 9245 nn0lt10b 9423 nn0lt2 9424 3halfnz 9440 xlt0neg2 9931 xle0neg2 9933 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 fihashen1 10908 cjap0 11089 abs00ap 11244 xrmaxiflemval 11432 mertenslem2 11718 mertensabs 11719 3dvdsdec 12047 3dvds2dec 12048 ndvdsi 12115 bitsfzo 12137 3prm 12321 prmfac1 12345 prm23lt5 12457 dec2dvds 12605 dec5dvds2 12607 sinhalfpilem 15111 sincosq1lem 15145 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 logrpap0b 15196 gausslemma2dlem1a 15383 2lgsoddprmlem3 15436 |
| Copyright terms: Public domain | W3C validator |