| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4038 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: breqtri 4059 en1 6860 snnen2og 6922 1nen2 6924 pm54.43 7260 caucvgprprlemval 7758 caucvgprprlemmu 7765 caucvgsr 7872 pitonnlem1 7915 lt0neg2 8499 le0neg2 8501 negap0 8660 recexaplem2 8682 recgt1 8927 crap0 8988 addltmul 9231 nn0lt10b 9409 nn0lt2 9410 3halfnz 9426 xlt0neg2 9917 xle0neg2 9919 iccshftr 10072 iccshftl 10074 iccdil 10076 icccntr 10078 fihashen1 10894 cjap0 11075 abs00ap 11230 xrmaxiflemval 11418 mertenslem2 11704 mertensabs 11705 3dvdsdec 12033 3dvds2dec 12034 ndvdsi 12101 bitsfzo 12123 3prm 12307 prmfac1 12331 prm23lt5 12443 dec2dvds 12591 dec5dvds2 12593 sinhalfpilem 15053 sincosq1lem 15087 sincosq1sgn 15088 sincosq2sgn 15089 sincosq3sgn 15090 sincosq4sgn 15091 logrpap0b 15138 gausslemma2dlem1a 15325 2lgsoddprmlem3 15378 |
| Copyright terms: Public domain | W3C validator |