| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4038 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: breqtri 4059 en1 6867 snnen2og 6929 1nen2 6931 pm54.43 7271 caucvgprprlemval 7774 caucvgprprlemmu 7781 caucvgsr 7888 pitonnlem1 7931 lt0neg2 8515 le0neg2 8517 negap0 8676 recexaplem2 8698 recgt1 8943 crap0 9004 addltmul 9247 nn0lt10b 9425 nn0lt2 9426 3halfnz 9442 xlt0neg2 9933 xle0neg2 9935 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 fihashen1 10910 cjap0 11091 abs00ap 11246 xrmaxiflemval 11434 mertenslem2 11720 mertensabs 11721 3dvdsdec 12049 3dvds2dec 12050 ndvdsi 12117 bitsfzo 12139 3prm 12323 prmfac1 12347 prm23lt5 12459 dec2dvds 12607 dec5dvds2 12609 sinhalfpilem 15135 sincosq1lem 15169 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 logrpap0b 15220 gausslemma2dlem1a 15407 2lgsoddprmlem3 15460 |
| Copyright terms: Public domain | W3C validator |