ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4042
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4038 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  breqtri  4059  en1  6860  snnen2og  6922  1nen2  6924  pm54.43  7260  caucvgprprlemval  7758  caucvgprprlemmu  7765  caucvgsr  7872  pitonnlem1  7915  lt0neg2  8499  le0neg2  8501  negap0  8660  recexaplem2  8682  recgt1  8927  crap0  8988  addltmul  9231  nn0lt10b  9409  nn0lt2  9410  3halfnz  9426  xlt0neg2  9917  xle0neg2  9919  iccshftr  10072  iccshftl  10074  iccdil  10076  icccntr  10078  fihashen1  10894  cjap0  11075  abs00ap  11230  xrmaxiflemval  11418  mertenslem2  11704  mertensabs  11705  3dvdsdec  12033  3dvds2dec  12034  ndvdsi  12101  bitsfzo  12123  3prm  12307  prmfac1  12331  prm23lt5  12443  dec2dvds  12591  dec5dvds2  12593  sinhalfpilem  15053  sincosq1lem  15087  sincosq1sgn  15088  sincosq2sgn  15089  sincosq3sgn  15090  sincosq4sgn  15091  logrpap0b  15138  gausslemma2dlem1a  15325  2lgsoddprmlem3  15378
  Copyright terms: Public domain W3C validator