| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4063 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: breqtri 4084 en1 6914 snnen2og 6981 1nen2 6983 pm54.43 7324 caucvgprprlemval 7836 caucvgprprlemmu 7843 caucvgsr 7950 pitonnlem1 7993 lt0neg2 8577 le0neg2 8579 negap0 8738 recexaplem2 8760 recgt1 9005 crap0 9066 addltmul 9309 nn0lt10b 9488 nn0lt2 9489 3halfnz 9505 xlt0neg2 9996 xle0neg2 9998 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 fihashen1 10981 swrdccatin2 11220 pfxccat3 11225 cjap0 11333 abs00ap 11488 xrmaxiflemval 11676 mertenslem2 11962 mertensabs 11963 3dvdsdec 12291 3dvds2dec 12292 ndvdsi 12359 bitsfzo 12381 3prm 12565 prmfac1 12589 prm23lt5 12701 dec2dvds 12849 dec5dvds2 12851 sinhalfpilem 15378 sincosq1lem 15412 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 logrpap0b 15463 gausslemma2dlem1a 15650 2lgsoddprmlem3 15703 |
| Copyright terms: Public domain | W3C validator |