ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4053
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4049 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  breqtri  4070  en1  6893  snnen2og  6958  1nen2  6960  pm54.43  7300  caucvgprprlemval  7803  caucvgprprlemmu  7810  caucvgsr  7917  pitonnlem1  7960  lt0neg2  8544  le0neg2  8546  negap0  8705  recexaplem2  8727  recgt1  8972  crap0  9033  addltmul  9276  nn0lt10b  9455  nn0lt2  9456  3halfnz  9472  xlt0neg2  9963  xle0neg2  9965  iccshftr  10118  iccshftl  10120  iccdil  10122  icccntr  10124  fihashen1  10946  cjap0  11251  abs00ap  11406  xrmaxiflemval  11594  mertenslem2  11880  mertensabs  11881  3dvdsdec  12209  3dvds2dec  12210  ndvdsi  12277  bitsfzo  12299  3prm  12483  prmfac1  12507  prm23lt5  12619  dec2dvds  12767  dec5dvds2  12769  sinhalfpilem  15296  sincosq1lem  15330  sincosq1sgn  15331  sincosq2sgn  15332  sincosq3sgn  15333  sincosq4sgn  15334  logrpap0b  15381  gausslemma2dlem1a  15568  2lgsoddprmlem3  15621
  Copyright terms: Public domain W3C validator