Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq2i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq2 3991 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: breqtri 4012 en1 6775 snnen2og 6835 1nen2 6837 pm54.43 7160 caucvgprprlemval 7643 caucvgprprlemmu 7650 caucvgsr 7757 pitonnlem1 7800 lt0neg2 8381 le0neg2 8383 negap0 8542 recexaplem2 8563 recgt1 8806 crap0 8867 addltmul 9107 nn0lt10b 9285 nn0lt2 9286 3halfnz 9302 xlt0neg2 9789 xle0neg2 9791 iccshftr 9944 iccshftl 9946 iccdil 9948 icccntr 9950 fihashen1 10727 cjap0 10864 abs00ap 11019 xrmaxiflemval 11206 mertenslem2 11492 mertensabs 11493 3dvdsdec 11817 3dvds2dec 11818 ndvdsi 11885 3prm 12075 prmfac1 12099 prm23lt5 12210 sinhalfpilem 13471 sincosq1lem 13505 sincosq1sgn 13506 sincosq2sgn 13507 sincosq3sgn 13508 sincosq4sgn 13509 logrpap0b 13556 |
Copyright terms: Public domain | W3C validator |