Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq2i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq2 3993 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: breqtri 4014 en1 6777 snnen2og 6837 1nen2 6839 pm54.43 7167 caucvgprprlemval 7650 caucvgprprlemmu 7657 caucvgsr 7764 pitonnlem1 7807 lt0neg2 8388 le0neg2 8390 negap0 8549 recexaplem2 8570 recgt1 8813 crap0 8874 addltmul 9114 nn0lt10b 9292 nn0lt2 9293 3halfnz 9309 xlt0neg2 9796 xle0neg2 9798 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 fihashen1 10734 cjap0 10871 abs00ap 11026 xrmaxiflemval 11213 mertenslem2 11499 mertensabs 11500 3dvdsdec 11824 3dvds2dec 11825 ndvdsi 11892 3prm 12082 prmfac1 12106 prm23lt5 12217 sinhalfpilem 13506 sincosq1lem 13540 sincosq1sgn 13541 sincosq2sgn 13542 sincosq3sgn 13543 sincosq4sgn 13544 logrpap0b 13591 |
Copyright terms: Public domain | W3C validator |