| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4049 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 class class class wbr 4045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: breqtri 4070 en1 6893 snnen2og 6958 1nen2 6960 pm54.43 7300 caucvgprprlemval 7803 caucvgprprlemmu 7810 caucvgsr 7917 pitonnlem1 7960 lt0neg2 8544 le0neg2 8546 negap0 8705 recexaplem2 8727 recgt1 8972 crap0 9033 addltmul 9276 nn0lt10b 9455 nn0lt2 9456 3halfnz 9472 xlt0neg2 9963 xle0neg2 9965 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 fihashen1 10946 cjap0 11251 abs00ap 11406 xrmaxiflemval 11594 mertenslem2 11880 mertensabs 11881 3dvdsdec 12209 3dvds2dec 12210 ndvdsi 12277 bitsfzo 12299 3prm 12483 prmfac1 12507 prm23lt5 12619 dec2dvds 12767 dec5dvds2 12769 sinhalfpilem 15296 sincosq1lem 15330 sincosq1sgn 15331 sincosq2sgn 15332 sincosq3sgn 15333 sincosq4sgn 15334 logrpap0b 15381 gausslemma2dlem1a 15568 2lgsoddprmlem3 15621 |
| Copyright terms: Public domain | W3C validator |