ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4052
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4048 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  breqtri  4069  en1  6891  snnen2og  6956  1nen2  6958  pm54.43  7298  caucvgprprlemval  7801  caucvgprprlemmu  7808  caucvgsr  7915  pitonnlem1  7958  lt0neg2  8542  le0neg2  8544  negap0  8703  recexaplem2  8725  recgt1  8970  crap0  9031  addltmul  9274  nn0lt10b  9453  nn0lt2  9454  3halfnz  9470  xlt0neg2  9961  xle0neg2  9963  iccshftr  10116  iccshftl  10118  iccdil  10120  icccntr  10122  fihashen1  10944  cjap0  11218  abs00ap  11373  xrmaxiflemval  11561  mertenslem2  11847  mertensabs  11848  3dvdsdec  12176  3dvds2dec  12177  ndvdsi  12244  bitsfzo  12266  3prm  12450  prmfac1  12474  prm23lt5  12586  dec2dvds  12734  dec5dvds2  12736  sinhalfpilem  15263  sincosq1lem  15297  sincosq1sgn  15298  sincosq2sgn  15299  sincosq3sgn  15300  sincosq4sgn  15301  logrpap0b  15348  gausslemma2dlem1a  15535  2lgsoddprmlem3  15588
  Copyright terms: Public domain W3C validator