ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4041
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4037 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  breqtri  4058  en1  6858  snnen2og  6920  1nen2  6922  pm54.43  7257  caucvgprprlemval  7755  caucvgprprlemmu  7762  caucvgsr  7869  pitonnlem1  7912  lt0neg2  8496  le0neg2  8498  negap0  8657  recexaplem2  8679  recgt1  8924  crap0  8985  addltmul  9228  nn0lt10b  9406  nn0lt2  9407  3halfnz  9423  xlt0neg2  9914  xle0neg2  9916  iccshftr  10069  iccshftl  10071  iccdil  10073  icccntr  10075  fihashen1  10891  cjap0  11072  abs00ap  11227  xrmaxiflemval  11415  mertenslem2  11701  mertensabs  11702  3dvdsdec  12030  3dvds2dec  12031  ndvdsi  12098  bitsfzo  12119  3prm  12296  prmfac1  12320  prm23lt5  12432  dec2dvds  12580  dec5dvds2  12582  sinhalfpilem  15027  sincosq1lem  15061  sincosq1sgn  15062  sincosq2sgn  15063  sincosq3sgn  15064  sincosq4sgn  15065  logrpap0b  15112  gausslemma2dlem1a  15299  2lgsoddprmlem3  15352
  Copyright terms: Public domain W3C validator