| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4037 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: breqtri 4058 en1 6858 snnen2og 6920 1nen2 6922 pm54.43 7257 caucvgprprlemval 7755 caucvgprprlemmu 7762 caucvgsr 7869 pitonnlem1 7912 lt0neg2 8496 le0neg2 8498 negap0 8657 recexaplem2 8679 recgt1 8924 crap0 8985 addltmul 9228 nn0lt10b 9406 nn0lt2 9407 3halfnz 9423 xlt0neg2 9914 xle0neg2 9916 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 fihashen1 10891 cjap0 11072 abs00ap 11227 xrmaxiflemval 11415 mertenslem2 11701 mertensabs 11702 3dvdsdec 12030 3dvds2dec 12031 ndvdsi 12098 bitsfzo 12119 3prm 12296 prmfac1 12320 prm23lt5 12432 dec2dvds 12580 dec5dvds2 12582 sinhalfpilem 15027 sincosq1lem 15061 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 logrpap0b 15112 gausslemma2dlem1a 15299 2lgsoddprmlem3 15352 |
| Copyright terms: Public domain | W3C validator |