ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 4037
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 4033 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 5 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  breqtri  4054  en1  6853  snnen2og  6915  1nen2  6917  pm54.43  7250  caucvgprprlemval  7748  caucvgprprlemmu  7755  caucvgsr  7862  pitonnlem1  7905  lt0neg2  8488  le0neg2  8490  negap0  8649  recexaplem2  8671  recgt1  8916  crap0  8977  addltmul  9219  nn0lt10b  9397  nn0lt2  9398  3halfnz  9414  xlt0neg2  9905  xle0neg2  9907  iccshftr  10060  iccshftl  10062  iccdil  10064  icccntr  10066  fihashen1  10870  cjap0  11051  abs00ap  11206  xrmaxiflemval  11393  mertenslem2  11679  mertensabs  11680  3dvdsdec  12006  3dvds2dec  12007  ndvdsi  12074  3prm  12266  prmfac1  12290  prm23lt5  12401  sinhalfpilem  14926  sincosq1lem  14960  sincosq1sgn  14961  sincosq2sgn  14962  sincosq3sgn  14963  sincosq4sgn  14964  logrpap0b  15011  gausslemma2dlem1a  15174  2lgsoddprmlem3  15199
  Copyright terms: Public domain W3C validator