Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq2i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq2 3985 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 class class class wbr 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 |
This theorem is referenced by: breqtri 4006 en1 6761 snnen2og 6821 1nen2 6823 pm54.43 7142 caucvgprprlemval 7625 caucvgprprlemmu 7632 caucvgsr 7739 pitonnlem1 7782 lt0neg2 8363 le0neg2 8365 negap0 8524 recexaplem2 8545 recgt1 8788 crap0 8849 addltmul 9089 nn0lt10b 9267 nn0lt2 9268 3halfnz 9284 xlt0neg2 9771 xle0neg2 9773 iccshftr 9926 iccshftl 9928 iccdil 9930 icccntr 9932 fihashen1 10708 cjap0 10845 abs00ap 11000 xrmaxiflemval 11187 mertenslem2 11473 mertensabs 11474 3dvdsdec 11798 3dvds2dec 11799 ndvdsi 11866 3prm 12056 prmfac1 12080 prm23lt5 12191 sinhalfpilem 13312 sincosq1lem 13346 sincosq1sgn 13347 sincosq2sgn 13348 sincosq3sgn 13349 sincosq4sgn 13350 logrpap0b 13397 |
Copyright terms: Public domain | W3C validator |