| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq2i | ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq2 4048 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: breqtri 4069 en1 6891 snnen2og 6956 1nen2 6958 pm54.43 7298 caucvgprprlemval 7801 caucvgprprlemmu 7808 caucvgsr 7915 pitonnlem1 7958 lt0neg2 8542 le0neg2 8544 negap0 8703 recexaplem2 8725 recgt1 8970 crap0 9031 addltmul 9274 nn0lt10b 9453 nn0lt2 9454 3halfnz 9470 xlt0neg2 9961 xle0neg2 9963 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 fihashen1 10944 cjap0 11218 abs00ap 11373 xrmaxiflemval 11561 mertenslem2 11847 mertensabs 11848 3dvdsdec 12176 3dvds2dec 12177 ndvdsi 12244 bitsfzo 12266 3prm 12450 prmfac1 12474 prm23lt5 12586 dec2dvds 12734 dec5dvds2 12736 sinhalfpilem 15263 sincosq1lem 15297 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 logrpap0b 15348 gausslemma2dlem1a 15535 2lgsoddprmlem3 15588 |
| Copyright terms: Public domain | W3C validator |