Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leneg | GIF version |
Description: Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leneg | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7932 | . . 3 ⊢ 0 ∈ ℝ | |
2 | lesub2 8388 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (0 − 𝐵) ≤ (0 − 𝐴))) | |
3 | 1, 2 | mp3an3 1326 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (0 − 𝐵) ≤ (0 − 𝐴))) |
4 | df-neg 8105 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
5 | df-neg 8105 | . . 3 ⊢ -𝐴 = (0 − 𝐴) | |
6 | 4, 5 | breq12i 4007 | . 2 ⊢ (-𝐵 ≤ -𝐴 ↔ (0 − 𝐵) ≤ (0 − 𝐴)) |
7 | 3, 6 | bitr4di 198 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 0cc0 7786 ≤ cle 7967 − cmin 8102 -cneg 8103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 |
This theorem is referenced by: lenegcon1 8397 lenegcon2 8398 le0neg1 8401 le0neg2 8402 lenegi 8425 lenegd 8455 uzneg 9519 iccneg 9960 minclpr 11213 mingeb 11218 |
Copyright terms: Public domain | W3C validator |