ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcang GIF version

Theorem caovcang 5763
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caovcang ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcang
StepHypRef Expression
1 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
21ralrimivvva 2452 . 2 (𝜑 → ∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
3 oveq1 5620 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
4 oveq1 5620 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑧) = (𝐴𝐹𝑧))
53, 4eqeq12d 2099 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝑧)))
65bibi1d 231 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧)))
7 oveq2 5621 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87eqeq1d 2093 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝑧)))
9 eqeq1 2091 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
108, 9bibi12d 233 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧)))
11 oveq2 5621 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐹𝑧) = (𝐴𝐹𝐶))
1211eqeq2d 2096 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶)))
13 eqeq2 2094 . . . 4 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
1412, 13bibi12d 233 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
156, 10, 14rspc3v 2729 . 2 ((𝐴𝑇𝐵𝑆𝐶𝑆) → (∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
162, 15mpan9 275 1 ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  wral 2355  (class class class)co 5613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-iota 4946  df-fv 4989  df-ov 5616
This theorem is referenced by:  caovcand  5764
  Copyright terms: Public domain W3C validator