![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovassd | GIF version |
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovassg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
caovassd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovassd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovassd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
caovassd | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | caovassd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovassd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovassd.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | caovassg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
6 | 5 | caovassg 6046 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
7 | 1, 2, 3, 4, 6 | syl13anc 1250 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 (class class class)co 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 |
This theorem is referenced by: caov32d 6068 caov12d 6069 caov13d 6071 caov4d 6072 caovdilemd 6079 caovimo 6081 enq0tr 7446 prarloclemlo 7506 ltsosr 7776 grpinvalem 12822 grpinva 12823 grprida 12824 grprcan 12933 |
Copyright terms: Public domain | W3C validator |