ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovassd GIF version

Theorem caovassd 6083
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovassg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovassd.2 (𝜑𝐴𝑆)
caovassd.3 (𝜑𝐵𝑆)
caovassd.4 (𝜑𝐶𝑆)
Assertion
Ref Expression
caovassd (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovassd
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovassd.2 . 2 (𝜑𝐴𝑆)
3 caovassd.3 . 2 (𝜑𝐵𝑆)
4 caovassd.4 . 2 (𝜑𝐶𝑆)
5 caovassg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
65caovassg 6082 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
71, 2, 3, 4, 6syl13anc 1251 1 (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caov32d  6104  caov12d  6105  caov13d  6107  caov4d  6108  caovdilemd  6115  caovimo  6117  enq0tr  7501  prarloclemlo  7561  ltsosr  7831  seqf1oglem2a  10610  grpinvalem  13028  grpinva  13029  grprida  13030  grprcan  13169
  Copyright terms: Public domain W3C validator