| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovassd | GIF version | ||
| Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovassg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| caovassd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovassd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovassd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovassd | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | caovassd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovassd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | caovassd.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 5 | caovassg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 6 | 5 | caovassg 6128 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| 7 | 1, 2, 3, 4, 6 | syl13anc 1252 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: caov32d 6150 caov12d 6151 caov13d 6153 caov4d 6154 caovdilemd 6161 caovimo 6163 enq0tr 7582 prarloclemlo 7642 ltsosr 7912 seqf1oglem2a 10700 grpinvalem 13332 grpinva 13333 grprida 13334 grprcan 13484 |
| Copyright terms: Public domain | W3C validator |