ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcanrd GIF version

Theorem caovcanrd 6016
Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
caovcand.2 (𝜑𝐴𝑇)
caovcand.3 (𝜑𝐵𝑆)
caovcand.4 (𝜑𝐶𝑆)
caovcanrd.5 (𝜑𝐴𝑆)
caovcanrd.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovcanrd (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcanrd
StepHypRef Expression
1 caovcanrd.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
2 caovcanrd.5 . . . 4 (𝜑𝐴𝑆)
3 caovcand.3 . . . 4 (𝜑𝐵𝑆)
41, 2, 3caovcomd 6009 . . 3 (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
5 caovcand.4 . . . 4 (𝜑𝐶𝑆)
61, 2, 5caovcomd 6009 . . 3 (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴))
74, 6eqeq12d 2185 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ (𝐵𝐹𝐴) = (𝐶𝐹𝐴)))
8 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
9 caovcand.2 . . 3 (𝜑𝐴𝑇)
108, 9, 3, 5caovcand 6015 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
117, 10bitr3d 189 1 (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator