ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdird GIF version

Theorem caovdird 6028
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdirg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
caovdird.2 (𝜑𝐴𝑆)
caovdird.3 (𝜑𝐵𝑆)
caovdird.4 (𝜑𝐶𝐾)
Assertion
Ref Expression
caovdird (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdird
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovdird.2 . 2 (𝜑𝐴𝑆)
3 caovdird.3 . 2 (𝜑𝐵𝑆)
4 caovdird.4 . 2 (𝜑𝐶𝐾)
5 caovdirg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
65caovdirg 6027 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
71, 2, 3, 4, 6syl13anc 1235 1 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5853
This theorem is referenced by:  caovdilemd  6041  recexgt0sr  7722
  Copyright terms: Public domain W3C validator