![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovdig | GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caovdig.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
Ref | Expression |
---|---|
caovdig | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdig.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) | |
2 | 1 | ralrimivvva 2560 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
3 | oveq1 5882 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝑦𝐹𝑧))) | |
4 | oveq1 5882 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
5 | oveq1 5882 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧)) | |
6 | 4, 5 | oveq12d 5893 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧))) |
7 | 3, 6 | eqeq12d 2192 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) ↔ (𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)))) |
8 | oveq1 5882 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧)) | |
9 | 8 | oveq2d 5891 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝑧))) |
10 | oveq2 5883 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
11 | 10 | oveq1d 5890 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧))) |
12 | 9, 11 | eqeq12d 2192 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)))) |
13 | oveq2 5883 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶)) | |
14 | 13 | oveq2d 5891 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝐶))) |
15 | oveq2 5883 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶)) | |
16 | 15 | oveq2d 5891 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
17 | 14, 16 | eqeq12d 2192 | . . 3 ⊢ (𝑧 = 𝐶 → ((𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) |
18 | 7, 12, 17 | rspc3v 2858 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) |
19 | 2, 18 | mpan9 281 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 (class class class)co 5875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 |
This theorem is referenced by: caovdid 6050 caovdi 6054 srgdilem 13152 ringdilem 13195 |
Copyright terms: Public domain | W3C validator |