Proof of Theorem caovdig
Step | Hyp | Ref
| Expression |
1 | | caovdig.1 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
2 | 1 | ralrimivvva 2549 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
3 | | oveq1 5849 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝑦𝐹𝑧))) |
4 | | oveq1 5849 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) |
5 | | oveq1 5849 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧)) |
6 | 4, 5 | oveq12d 5860 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧))) |
7 | 3, 6 | eqeq12d 2180 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) ↔ (𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)))) |
8 | | oveq1 5849 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧)) |
9 | 8 | oveq2d 5858 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝑧))) |
10 | | oveq2 5850 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) |
11 | 10 | oveq1d 5857 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧))) |
12 | 9, 11 | eqeq12d 2180 |
. . 3
⊢ (𝑦 = 𝐵 → ((𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)))) |
13 | | oveq2 5850 |
. . . . 5
⊢ (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶)) |
14 | 13 | oveq2d 5858 |
. . . 4
⊢ (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝐶))) |
15 | | oveq2 5850 |
. . . . 5
⊢ (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶)) |
16 | 15 | oveq2d 5858 |
. . . 4
⊢ (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
17 | 14, 16 | eqeq12d 2180 |
. . 3
⊢ (𝑧 = 𝐶 → ((𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) |
18 | 7, 12, 17 | rspc3v 2846 |
. 2
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) |
19 | 2, 18 | mpan9 279 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |