ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordg GIF version

Theorem caovordg 6009
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovordg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
Assertion
Ref Expression
caovordg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovordg
StepHypRef Expression
1 caovordg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
21ralrimivvva 2549 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
3 breq1 3985 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
4 oveq2 5850 . . . . 5 (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴))
54breq1d 3992 . . . 4 (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))
63, 5bibi12d 234 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))))
7 breq2 3986 . . . 4 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 oveq2 5850 . . . . 5 (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵))
98breq2d 3994 . . . 4 (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
107, 9bibi12d 234 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
11 oveq1 5849 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴))
12 oveq1 5849 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵))
1311, 12breq12d 3995 . . . 4 (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1413bibi2d 231 . . 3 (𝑧 = 𝐶 → ((𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
156, 10, 14rspc3v 2846 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15mpan9 279 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovordd  6010
  Copyright terms: Public domain W3C validator